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ABSTRACT 

 

The problem of bacterial resistance has been recently brought to light due to the extra 

medical expenses and deaths involved in infections by resistant strains. Although there have 

been improvements in developing antimicrobials, the basic understanding of the mechanisms 

conferring resistance to Gram-negative bacteria is still needed to combat complex drug 

resistance. Among bacterial defense mechanisms, the efflux of antimicrobials by multi-drug 

and metal ion membrane pumps is the major concern in this dissertation. Particularly, the 

resistance-nodulation-cell division (RND) family has shown the power of bypassing the 

periplasm when pumping toxins and enhancing the efficacy of substrate extrusion. Drug 

resistance is also mediated at the genetic level by local repressors such as the TetR protein 

family. CmeR, a member of the TetR family from Campylobactor jejuni, represses the 

expression of the RND efflux pump CmeABC by binding at the promoter region of the 

cmeABC operon. CmeR has the ability to accommodate large amphiphiles. The crystal 

structures of the CmeR-bile acid complexes are presented to show the details of the ligand-

binding tunnel at the C-terminal. In this dissertation, two other RND efflux systems, Cus and 

Mtr, are discussed. The importance of the first cysteine residue on the outer membrane 

protein CusC has been demonstrated by the crystal structures. The structures of the Cys1-

mutated CusC suggest a possible route of the channel formation on the outer membrane prior 

to the assembly of the Cus efflux system. The efficient extrusion of antimicrobials requires 

an open state of the outer membrane channel in the RND efflux system. Recently, the crystal 

structure of MtrE, an outer membrane channel of the Mtr system from Neisseria 

gonorrhoeae, has also been solved. Due to the relaxed coiled-coils of the α-helical domain, 

the crystal structure of MtrE is found at its open state. The structural analysis of MtrE gives 

insights of a native open state of an outer membrane channel. In comparison with other outer 

membrane channels with known crystal structures, the structure of MtrE agrees with the 

transition theory hypothesized by the structure of TolC, the outer membrane channel of the 

AcrAB-TolC efflux system. In depth, the findings regarding RND-type efflux pumps and 

their transcriptional regulators should elucidate the mechanisms mediating drug resistance in 

bacteria at the atomic level. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

Antimicrobial resistance has been the focus of public health ever since the emergence 

of new resistance mechanisms outpaced development of new antibiotics. The spread of 

infectious diseases was once slowed down by the invention of broad-spectrum antibiotics in 

the golden era from 1940-1960 [1]. Soon after, people started to notice the relapse of the 

illness from chronic infections [2]. The mechanisms that allow bacteria to survive after 

therapeutic treatment by antibiotics are still under investigation. Gastroenteritis and 

gonorrhea are two of the most common infectious diseases in the world [3]. The pathogenic 

bacteria that cause these diseases include Campylobacter jejuni, Escherichia coli and 

Neisseria gonorrhoeae. Like other bacteria, they have the ability to persist in the presence of 

toxins and antibiotics [4], [5].  

In order to be effective, the drug must reach the bacterial cells and accumulate to raise 

the intracellular concentration [6]. The studies of E. coli minicells led to the discovery of a 

membrane protein conferring resistance to tetracycline [7]. This protein was later identified 

as an inner membrane transporter. Indeed, the resistant cells have demonstrated the induction 

of active efflux pumps in response to antibiotics [8], [9]. The efflux systems in the cell 

membranes counteract the diffusion of the drugs to reduce the concentration in the cytosol. 

Interestingly, the efflux pumps are not only observed in prokaryotic organisms, but also in 

eukaryotic plant and mammalian cells [10]. 

At present, bacterial efflux systems are extensively characterized and classified into 

five major superfamilies: resistance-nodulation-cell division (RND), major facilitator (MF), 

small multidrug resistance (SMR), ATP-binding cassette (ABC) and multidrug and toxic 
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compound extrusion (MATE) [11]. RND efflux systems are found in all kingdoms of life, but 

are mainly involved in conferring drug resistance to bacteria [12]. The topology of most 

RND transporters characteristically shows 12 transmembrane segments (TMs) and 2 large 

loops protruding into the periplasmic region between TM1, TM2 and TM7, TM8. The water-

soluble loops reside in the periplasmic region and form the well-structured periplasmic 

subdomains [11]. Among the identified RND transporters, seven out of eight in E. coli, two 

out of four in C. jejuni and one out of two in N. gonorrhoeae mediate multidrug or metal ion 

efflux through the bacterial membrane [13]–[15]. The RND efflux system is essential to 

multidrug resistance by directly exporting antibiotics to the extracellular space. With 

experimental evidence, the expression of the RND efflux proteins synergistically affects 

intrinsic antibiotic resistance of Gram-negative bacteria with the outer membrane [9].  

A RND efflux system contains three parts: inner membrane efflux pump (IMP), the 

periplasmic membrane fusion protein (MFP) and the outer membrane channel protein 

(OMP). The polypeptide ratio of the components in the tripartite complex has been 

demonstrated to be 3:6:3 for CzcCBA, TolC-AcrAB and CusCBA [16]–[19]. Crystal 

structures of three more RND transporters have been published since the first structure of the 

RND efflux pump AcrB was revealed [20]–[22]. In the previous phylogenetic analysis of 

bacterial genome based on the amino acid sequences, HAE (hydrophobe/amphiphilic efflux 

pumps) and HME (heavy-metal efflux pumps) are two major clusters [23]. It is shown that 

these two subfamilies are found in gram-negative bacteria [24]. As a trimer, inner membrane 

pumps utilize the proton motive force to transfer a broad range of substrates such as 

antimicrobials, detergents, small toxic molecules and metal ions. The IMPs have shown the 

ability to take up substrates from both the periplasmic and cytoplasmic space [16], [25], [26]. 
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To analyze the efficacy of IMPs, fluorescence quenching, which utilizes the liposome-

reconstituted IMPs, has been performed for AcrB, CzcA and CusA [20], [27], [28]. Different 

from the multidrug transporters, the metal ion efflux pumps usually have a narrow range of 

substrates. The substrate specificity of the pump depends on the binding site, which consists 

of diverse residues such as asparagine, aspartic acid, glutamic acid and methionine [29]. The 

monovalent and divalent metal ion binding sites possess different coordination geometry to 

adopt the selectivity with various sets of residues [30]. On the other hand, HAE pumps have 

flexible binding pockets that are mainly hydrophobic. The large ligands often require 

additional stabilization by a few polar or charged residues together with the hydrophobic 

interactions in the binding cavity [31]. The pioneer investigations on the membrane efflux 

protein AcrB led to the proposed mechanism of stepwise substrate extrusion. In the active 

export of its substrates, the AcrB protomer turns into the access state, the binding state and 

the extrusion state in a rotational sequence between three protomers [16], [32], [33]. 

MFPs are elongated polypeptides that interact with both inner membrane pumps and 

outer membrane proteins in the periplasmic space. To date, four MFPs (MexA, AcrA, CusB 

and ZneB) involved in RND efflux systems have been investigated and have had crystal 

structures described in detail [34]–[37]. Among the four, MexA and AcrA are parts of the 

HAE-RND efflux systems MexAB-OprM and AcrAB-TolC, respectively. CusB and ZneB 

belong to the HME-RND efflux systems CusCBA and ZneCAB. MexA and AcrA have 62% 

identity and structurally resemble each other with the same linear arrangement of secondary 

domains [35]. The sickle-curved MFP is comprised of a β-barrel domain at one end, a central 

globular domain and an adjacent α-helical hairpin domain [34], [35]. CusB consists of three 

β-strand globular domains and one α-helical domain distinctively formed from three α-
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helices where other MFPs only have two α-helices at the tip [36]. Proteolytic digestions have 

been used to prove the conformational flexibility of the MFP. In the case of AcrA, only the 

stable core structure was retained after digestion by thermolysin [35], indicating that the 

peptide chain has a great proteinase accessibility and flexible regions. The nature of MFPs to 

present themselves as multimers in the asymmetric units implies the availability of 

collaborative activities that require interactions between molecules. The interaction between 

MFP and IMP has been elucidated through the recent publication of the crystal structure of 

the CusBA complex [19]. The involvement of the first two globular domains of CusB with 

the IMP CusA includes charge-charge and charge-dipole interactions. It is also found that the 

three-methionine binding site of CusB in the lower β-barrel domain is likely posed at the 

cleft between periplasmic subdomains PC1 and PC2 of CusA. The proximity of random coils 

of CusB to this cleft could be supportive to the proposed mechanism that MFPs assist IMPs 

in substrate extrusion [19][38]. The presence of the MFP in the RND efflux systems has been 

considered indispensable for the extrusion of substrates [39]. 

To complete the transenvelope transport, a RND efflux system must organize the 

readily formed IMP-MFP complex to cooperate with the OMP [40], [41]. So far, five 

different OMPs of RND efflux systems have been structurally characterized. Unlike the 

restricted combination of the IMP and MFP, the working partner of the OMP could be 

substitutable; for instance, in the RND efflux system AcrAB-TolC and the ATP binding 

cassette (ABC) transporter MacAB-TolC [8][42]. TolC, the efflux component of AcrAB-

TolC system, was the first OMP structure elucidated. Similar to other later structures of 

OMPs, the TolC channel is comprised of three protomers [43]. The twisted homotrimer 

creates a pore on the outer membrane of gram-negative bacterial cells. Each protomer has 



www.manaraa.com

 5 

three major domains: the transmembrane β-barrel domain, the extending α-helical domain 

and the equatorial domain. With each protomer contributing four β-strands and four 

pseudocontinuous helices, the trimeric channel is able to become a gigantic cannon 

possessing an internal volume in the range of 25000-45000 Å3 [43]–[46]. The importance of 

TolC has been demonstrated in previous studies in not only the antimicrobial efflux systems, 

but also the large polypeptide transport systems [47]. The incomplete exit of substrates due to 

the absence of the OMP leads to increased drug susceptibility [48]. The direct association of 

TolC with the MFP AcrA and the IMP AcrB has been used to propose the extrusion model in 

which the conformational change of the adaptor protein MFP opens the periplasmic channel 

and connects the inner membrane pump and outer membrane channel [28]. Besides the 

AcrAB-TolC system, other RND efflux systems such as MtrCDE and CusCBA have similar 

proposed extrusion mechanisms [8], [19], [49], [50]. It was pointed out that the collaboration 

between the channel protein and adaptor protein is transient [47]. The rapid and repeated 

recruitment of outer membrane channels is expected. Evidence pertinent to the recruiting 

process initiated by the adaptor protein has been mentioned in recent publications [49], [51]. 

Through analysis of residues near the end of the periplasmic helices, the transition from the 

closed to the open state of the OMPs is proposed to coincide with the shift of two helices 

from the inward position to the outward position [52]. The electrostatic potential of the 

interior surface of the channel is usually negative [53]. However, because of the short 

association between the OMP and the efflux system, it is difficult to use the charged surface 

to selectively react with various classes of substrates. Thus, the selectivity may depend on 

other factors such as the width of the opening or the residues near the tip of the α-helical 

domain in the periplasmic region. 
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Transcriptional regulator proteins can control the expression of efflux systems in 

response to the environment. A typical transcriptional regulator of drug efflux pumps has a 

ligand binding domain and a DNA-binding domain. For the TetR family, the biologically 

functional form is a dimer that contains a helix-turn-helix (HTH) DNA-binding motif in each 

protomer. The profile of the TetR family exemplified by alignment has shown conserved 

residues in the region of two helices α2 and α3 at the N-terminal [54], [55]. The genes 

encoding several local repressors such as AcrR, MtrR, MexR and CmeR are found near their 

designated downstream operons encoding RND efflux systems [56]–[59]. With an inducer 

bound to the ligand binding sites of the repressor protein, the conformational change 

introduced in the HTH DNA-binding motif loosens the regulator protein from the operator 

and allows the transcription of the efflux transporter. This derepression process contributes to 

the intrinsic drug resistance in bacterial cells by allowing the expression of the proteins that 

pump out drugs [54]. The crystal structures of the regulator proteins, describing the DNA 

recognition and the change of conformation upon binding with the ligands, can help us 

understand the intrinsic drug resistance of Gram-negative bacteria. 
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Thesis Organization 

Chapter 1 is the general introduction that provides the background information of the 

RND efflux systems, which mediate the bacterial drug resistance, and their adaptive 

regulation by transcriptional regulators.  

Chapter 2 is a manuscript published in Protein Science. In this chapter, the ability of 

CmeR, the repressor of the cmeABC operon, to bind large amphiphiles has been explained by 

the crystal structures of the CmeR-bile acid complexes. The comparison between different 

sets of residues interacting with the two large bile salts is described. The interactions between 

ligands and the protein in the crystal structures can give rise to the importance of the charged 

residues near the hydrophobic binding tunnel in the ligand-binding domain.  

In Chapter 3, the formation of the mature outer membrane channel CusC is discussed 

as published in Journal of Molecular Biology. Through the guidance of the first cysteine in 

the protein sequence, CusC protein molecules are likely to anchor onto the inner leaflet of the 

outer membrane before the subsequent folding of transmembrane β-barrel domain. The 

proposed mechanism is based on the discovery of the immature intermediate structures of 

CusC mutants.  

Chapter 4 is a manuscript accepted in PLoS One. The newly found crystal structure of 

the outer membrane channel MtrE is the only reported open state without any alteration of 

the protein sequence [52]. The hypothesis of transitioning from closed state to open state 

during the active export of substrates can be supported by the existence of the open state 

conformation found from the native MtrE. Additional analysis has been made on the trace of 

the charged residues at the inter- and intra-protomer grooves of the α-helical domain, 

essential for collaboration with other components in the efflux assembly.  
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Chapter 5 is the conclusion and future directions. In this chapter, all the findings are 

summarized and organized by the theme of understanding the mechanism of the RND efflux 

systems. The work in this dissertation contributes to the field of bacterial multidrug efflux 

through the elucidation of the crystal structures of the proteins that are essential to the fully 

functional RND efflux complexes. 
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Abstract 

The TetR family of transcription regulators are diverse proteins capable of sensing 

and responding to various structurally dissimilar antimicrobial agents. Upon detecting these 

agents, the regulators allow transcription of an appropriate array of resistance markers to 

counteract the deleterious compounds. Campylobacter jejuni CmeR is a pleiotropic regulator 

of multiple proteins, including the membrane-bound multidrug efflux transporter CmeABC. 

CmeR represses the expression of CmeABC and is induced by bile acids, which are 

substrates of the CmeABC tripartite pump. The multiligand-binding pocket of CmeR has 

been shown to be very extensive and consists of several positively charged and multiple 

aromatic amino acids. Here we describe the crystal structures of CmeR in complexes with the 

bile acids, taurocholate and cholate. Taurocholate and cholate are structurally related, 

differing by only the anionic charged group. However, these two ligands bind distinctly in 

the binding tunnel. Taurocholate spans the novel bile acid binding site adjacent to and 

without overlapping with the previously determined glycerol-binding site. The anionic 

aminoethanesulfonate group of taurocholate is neutralized by a charge-dipole interaction. 

Unlike taurocholate, cholate binds in an anti-parallel orientation but occupies the same bile 

acid- binding site. Its anionic pentanoate moiety makes a water-mediated hydrogen bond 



www.manaraa.com

 16 

with a cationic residue to neutralize the formal negative charge. These structures underscore 

the promiscuity of the multifaceted binding pocket of CmeR. The capacity of CmeR to 

recognize bile acids was confirmed using isothermal titration calorimetry and fluorescence 

polarization. The results revealed that the regulator binds these acids with dissociation 

constants in the micromolar region. 

 

Introduction 

The ability of bacteria to adapt and respond to diverse classes of toxic compounds 

allows these organisms to survive in a variety of harsh environments. Campylobacter jejuni, 

the leading bacterial cause of food-borne enteritis in humans, is able to flourish in the 

intestinal mucosa due to its rapid response to bile acid intrusion.1,2 This Gram-negative 

enteric pathogen has become increasingly resistant to common anti- bacterial agents 

encountered during the course of an infection. The intrinsic and acquired resistance to these 

diverse classes of toxic chemicals is facilitated through the expression of multidrug resistant 

(MDR) efflux transporters. The MDR pumps are capable of effectively lowering the 

intracellular concentration, thus compromising the effectiveness of the antibacterial 

compounds. Based on the genomic sequence of C. jejuni NCTC 11168, this organism harbors 

13 putative MDR transporters that belong to five different classes, including the ATP-

binding cassette (ABC) superfamily, the resistance-nodula- tion-division (RND) family, the 

multidrug and toxic compound extrusion (MATE) family, the major facilitator (MF) 

superfamily, and the small multidrug resistance (SMR) family.3,4 Currently, only two RND 

efflux transporters, CmeABC and CmeDEF, in C. jejuni have been functionally 

characterized.5–8 
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 Among these five different families of transporters, members of the RND superfamily 

exhibit the broadest range of substrate specificity and are usually the primary contributor to 

the intrinsic multi- drug resistance associated with Gram-negative organisms.9,10 CmeB, a 

prototypical RND family transporter, is the major efflux transporter in C. jejuni. This inner 

membrane efflux pump functions as a tripartite protein complex along with a periplasmic 

membrane fusion protein, CmeA, and an outer membrane channel, CmeC, to extrude 

deleterious compounds from the bacterial cell.6 The CmeABC complex recognizes and 

protects C. jejuni from a diverse set of antibacterial compounds, including commonly used 

antibiotics, metal ions, and lipophilic compounds.2,6–8,11 In addition, CmeABC plays a major 

role in conferring resistance to bile acids, which are ubiquitously present in the intestinal 

tract.2,12 It has been reported that mutant strains of C. jejuni lacking a functional CmeABC 

are unable to colonize in the intestinal tract of chickens.2 The essential role of CmeABC for 

the growth of C. jejuni in the intestinal mucosa highlights the importance of this efflux 

complex to the pathogenicity of the bacterium. 

 The expression of CmeABC is controlled by the transcriptional regulator CmeR, 

whose open reading frame is located immediately upstream of the cmeABC operon and is 

transcribed divergently.13 Transcription of the cmeR gene gives rise to a 210 amino acid 

protein, which shares N-terminal sequence and structural similarities to members of the TetR 

family.14,15 CmeR is a two-domain protein with an N-terminal DNA-binding motif and a C-

terminal multiligand-binding domain. Experimental evidence suggests that the 16 base pair 

palindromic inverted repeat (IR) sequence, 5’ TGTAATAAATATTACA 3’, located between 

cmeR and cmeABC is the operator site for CmeR binding and transcriptional repression.13 

Bile acids induce the expression of cmeABC by inhibiting the binding of CmeR to this 
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operator.12 

The crystal structure of CmeR revealed that CmeR exhibits a unique secondary 

structural feature among all known structures of the TetR family of regulators.16 To date, 

CmeR is the only regulator in the TetR family that lacks the N-terminal helix-turn-helix 

DNA-binding motif, in which the recognition helix α3 is replaced by a random coil.16,17 

Along with this unique characteristic, a large center-to-center distance (54 Å as measured by 

the separation between Cα atoms of Y51 and Y51’ from the other subunit) was observed 

between the two N-termini of the dimer, making it incompatible with the distance between 

two consecutive major grooves of B-DNA. Each monomer of CmeR consists of nine helices, 

and numbered with helix α3 being skipped to facilitate comparisons to other members of the 

TetR family. As a result, the N-terminal domain of CmeR comprises helices α1 and α2 along 

with this random coil (Fig. 1). The larger C-terminal domain is composed of helices α4-α10, 

forming a very large hydrophobic tunnel for substrate binding. This tunnel is about 20 Å long 

with a volume of approximately 1000 Å3, which is distinctly larger than the binding pockets 

of many other members of the TetR family. Surprisingly, a fortuitous glycerol molecule was 

found to bind in the binding tunnel of each monomer.16 Residues F99, F103, F137, S138, 

Y139, V163, C166, T167, and K170 are responsible for forming this glycerol-binding site. 

The structure also suggests that CmeR binds glycerol in a manner of 1:1 monomer-to-ligand 

molar ratio. The volume of the ligand-binding tunnel of CmeR is large enough to 

accommodate a few of the ligand molecules. Additional water molecules fill the portion of 

the large tunnel that is unoccupied by ligand. Thus, CmeR might be able to bind more than 

one drug molecule at a time, or possibly accommodate a significantly larger ligand that spans 

across the entire binding tunnel. This tunnel, possibly consisting of multiple binding sites for 
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different ligands, is rich in aromatic residues and contains four positively charged amino 

acids (three histidines and one lysine). Based on the structural information and the fact that 

bile acids induce transcription of cmeABC, we hypothesize that CmeR may utilize these 

positively charged residues to recognize negatively charged ligands, like bile acids. To 

elucidate how CmeR recognizes these large anionic ligands, we here report the crystal 

structures of CmeR in complexes with taurocholate (Tch) and cholate (Chd), respectively. 

 

Results 

 Crystals of the bile acid bound complexes belonged to the space group P21212, with 

the asymmetric unit being occupied by one CmeR molecule. The symmetry operators were 

used to identify the dimeric state of CmeR (Fig. 1). These bile acids were found to bind 

within the ligand-binding tunnel and interact with the regulator using a surprisingly novel 

binding site. However, the overall conformation of the bile acid bound CmeR structures are 

very similar to that of the CmeR-glycerol structure. 

 

Structure of the CmeR-Taurocholate complex. The crystal structure of the CmeR-Tch 

complex (Fig. 1) was refined to 2.20 Å resolution with a final Rwork of 22.2% and Rfree of 

28.4% (Table I), revealing that Tch binds within the ligand-binding tunnel in a position 

adjacent to the previously identified glycerol-binding site. The Tch binding site utilizes a 

distinct set of amino acids to accommodate the elongated structure of the bile acid, while 

leaving the glycerol-binding site unoccupied. The simulated annealing electron density omit 

map of this bound Tch is illustrated in Figure 2. 

The four-ring system of the bound Tch is completely buried in the CmeR binding 
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tunnel, leaving its negatively charged 2-aminoethanesulfonate group in the 5β position 

oriented at the entry point and exposed to the solvent. This four-ring skeleton, mimicking the 

steroid backbone, consists of three hydroxyl groups located at the 3α, 7α, and 12α positions. 

The CmeR-Tch structure demonstrates that the 3α-hydroxyl group in the A ring makes a 

hydrogen bond with the positively charged residue H72 (Fig. 3). The C ring and the 12α-

hydroxyl group of Tch; however, face directly toward helix α8 and subunit interface of the 

dimer. This orientation facilitates the interaction between the 12α-hydroxyl oxygen and 

H175’ of the next subunit of CmeR, allowing them to form a second hydrogen bond to 

anchor the bound Tch. Interestingly, the repressor protein further anchors this bound bile acid 

molecule through a water-mediated hydrogen bond between K170 of helix α8 and the 7α-

hydroxyl group of the B ring to secure the binding. 

Perhaps, the most striking feature for Tch binding is found at the other end of the 

molecule which harbors the anionic, conjugated ethanesulfonate tail. Tch is bound in such a 

way that the long 2-aminoethanesulfonate moiety at the 5β position is extended slightly out 

of the binding tunnel exposed to the solvent, while still in close enough proximity to interact 

with residues forming the entrance of the tunnel. Within 5 Å of this negatively charged 

sulfonate group, there are no positively charged histidines, lysines or arginines available to 

neutralize the formal negative charge of this sulfonate moiety. Instead, this conjugated acidic 

tail is engaged to interact with the side chain carbamoyl nitrogen of residue Q134, thus 

forming an additional hydrogen bond to anchor the bound Tch. 

Surprisingly, the large molecule of Tch does not occupy the entire volume of the 

tunnel. The four-ring backbone and the 2-aminoethanesulfonate tail of the bound Tch are not 

linear in shape, but rather curve upward and result in a concave conformation. Thus, the end-
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to-end length of the molecule is significantly shorter than it was expected and only reaches 

16.1 Å. In doing so, CmeR is able to accommodate and create a novel bile acid-binding 

pocket for Tch. This new binding pocket is distinct from the previously determined glycerol-

binding site. The bound Tch only spans this Tch-binding site and several solvent molecules 

are found in the glycerol-binding pocket. Thus, it is very likely that the large ligand-binding 

tunnel of CmeR could accommodate a bile acid and a glycerol molecule simultaneously. As 

the binding tunnel of CmeR is mostly hydrophobic in nature, the bound Tch is also found to 

make extensive hydrophobic contacts with residues forming the wall of this tunnel. It is 

observed that at least 10 hydrophobic amino acids, including four aromatic residues (F103, 

F111, W129 and F137), that line the inside wall of the tunnel are involved in Tch binding 

(Table II).  

 

Structure of the CmeR-Cholate complex. The crystal structure of the CmeR-Chd complex 

was refined to a resolution of 2.35 Å, resulting in Rwork and Rfree of 20.0% and 26.3%, 

respectively (Table I). This structure revealed that the binding mode for Chd, which differs 

from Tch by its 5β-cholanoate group, is very distinct. Figure 4 illustrates the simulated 

annealing electron density omit map of this bound Chd. Surprisingly, the bound Chd was 

found to orient in an opposite direction when compared with Tch. Thus, the bound Chd and 

Tch are antiparallel to each other. For Chd binding, Chd is completely buried within the 

hydrophobic tunnel in a way that its non-conjugated 5β-cholanoate tail is inserted into the 

end of the tunnel, leaving its four-ring steroid backbone anchored closer to the entrance. In 

this manner, the anionic pentanoate moiety of Chd directly interacts with the positively 

charged H174 of helix α9 through a water-mediated hydrogen bond to anchor this bile acid 
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(Fig. 5). Unlike Tch, in which its anionic ethanesulfoate group is stabilized by charge-dipole 

interaction, the structure of CmeR-Chd suggests that the negatively charged end of Chd is 

neutralized by this positively charged histidine residue via a water-mediated hydrogen bond. 

Important interactions have been found to establish at the 3α, 7α and 12α-hydroxyl groups of 

the four-ring system. The 3α and 7α-hydroxyl groups contribute two hydrogen bonds with 

C166 and H175’, respectively, to stabilize the steroid backbone. However, the 12α-hydroxyl 

moiety participates to form two water-mediated hydrogen bonds with C69 and K170 to 

further secure the binding. The bound Chd molecule is significantly curved upward and 

exhibits a boat-like conformation. As a result, the end-to-end length of the molecule is only 

11.5 Å. The curved Chd also makes interactions with 11 additional amino acids, including 

five aromatic residues (F103, F111, W129, F137 and Y139) that create the wall of the tunnel 

(Table II). 

Overall, Chd and Tch share the same ligand-binding pocket. These bile acids do not 

span the entire tunnel, but rather bend into a concave structure. In this conformation, these 

bile acids occupy a novel distinct binding site that is not overlapped with the previously 

determined glycerol-binding site (Figs. 3 and 5). Based on the structures of CmeR-bile acid 

complexes, it is observed that the glycerol-binding site in the tunnel remains unoccupied 

upon bile acid binding. Instead, several solvent molecules are found in this glycerol site. 

Thus, it is very likely that the large ligand-binding tunnel of CmeR could accommodate a bile 

acid and a glycerol molecule simultaneously. Tch and Chd are structurally related, differing 

only by the anionic charged group. Nonetheless, these two bile acids bind distinctly in the 

binding tunnel. These distinct binding modes indeed underscore the promiscuity of the 

multifaceted binding pocket of CmeR. 
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CmeR-bile acid interactions. The binding affinity of each bile acid for the CmeR regulator 

was determined using isothermal titration calorimetry (ITC), which obtained dissociation 

constants, KDs, of 1.5 ± 0.1 µM for Tch and 2.5 ± 0.1 µM for Chd. In each case, the titration 

is characterized by a negative enthalpic contribution, which gives rise to a hyperbolic binding 

curve (Fig. 6). As expected, the thermodynamic parameters of binding of each bile acid to 

CmeR are similar, with Tch and Chd displaying enthalpic (ΔH) contributions of −59 ± 1 

kcal/mol and −44 ± 4 kcal/mol, respectively. Similar entropic contributions have also been 

found through these titrations, with ΔS(Tch) = 8 cal mol deg−1 and ΔS(Chd) = 10 cal mol 

deg−1. The stoichiometries of bile acid binding observed with ITC ranged from 0.9 to 1.0 

(bile acid/CmeR monomer). 

Figure 7(a) illustrates the binding isotherm of CmeR in the presence cholyl-lysyl-

fluorescein (Clf, a fluorescein-labeled bile acid) using fluorescence polarization (FP). As 

presented in the figure, a simple hyperbolic curve was observed for the binding of Clf with a 

dissociation constant, KD, of 50.2 ± 0.4 µM. A Hill plot of the data yielded a Hill coefficient 

of 1.07 ± 0.03 [Fig. 7(b)], suggesting a simple drug binding process with a stoichiometry of 

one CmeR monomer per Clf ligand. These results indeed are in good agreement with the 

crystal structure that each monomer of CmeR binds one bile acid in the binding tunnel.  

 

Discussion 

With the rising incidences of MDR strains of bacteria, it has become increasingly 

important to understand how individual proteins are able to recognize such diverse 

substrates. The crystal structures of the QacR multidrug binding protein in complex with its 



www.manaraa.com

 24 

respective ligands have provided many insights into the mechanism of multidrug binding,18,19 

but these reports have primarily involved positively charged compounds. The CmeR-bile 

acid complexes reveal how a TetR family protein specifically interacts with negatively 

charged ligands. To this point, the crystal structure of MarR-salicylate has provided evidence 

on how regulatory proteins recognize anionic compounds.20 The negatively charged 

salicylate binds to MarR within a solvent exposed crevice, rather than a large pocket, and 

interacts with arginines to neutralize its formal charge. The binding crevice lacks the familiar 

aromatic residues that are critically important in other multidrug binding proteins. It is 

intriguing that the multidrug binding protein TtgR seems to utilize a different mechanism to 

recognize negatively charged antibiotics and plant antimicrobials.21 The hydrophobic 

environment is provided in the ligand binding pocket at the C-terminal regulatory domain. In 

addition, a positively charged histidine and a polar asparagine are also found to involve in the 

binding. For CmeR, this regulator seems to share a similar mechanism with TtgR to 

recognize negatively charged bile acids. Within the multifaceted binding tunnel there are at 

least seven aromatic residues, five phenylalanines, one tyrosine and one tryptophan, lining 

the hydrophobic surface to accommodate staking interactions with the ligands. In addition, 

cationic amino acids are observed to involve in bile acid binding. In fact, within the binding 

tunnel of CmeR, there are four positively charged residues, including H72, K170, H174 and 

H1750 (Table II). These residues, which underscore the diversity of the CmeR binding 

tunnel, probably function to neutralize charges and accommodate the binding of anionic and 

neutral ligands. This phenomenon is clearly demonstrated in the structures of CmeR-Tch and 

CmeR-Chd, in which the negatively charged ligands are secured in the binding tunnel by 

several of these cationic residues. Surprisingly, the two elongated bile acids did not bind in 
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the same orientation inside the tunnel of CmeR, but were actually bound antiparallel to each 

other. Chd was bound in an orientation where its A ring was located close to the tunnel 

opening. However, the bound Tch molecule displayed a contrasting orientation, whereby the 

corresponding A ring was buried deeply inside the far end of the tunnel. Because of the 

difference in orientation, the conserved four-ring systems of Tch and Chd were found to bind 

in different environments. Intriguingly, only two positively charged residues are found to 

commonly used in the binding of Tch and Chd. Residues K170 and H175’ form important 

hydrogen bonds to secure the steroid backbones of Tch and Chd. In the case of Tch, CmeR 

further anchors the steroid backbone of this ligand by using the positively charged H72 

residue to form an additional hydrogen bond with the 3α-hydroxyl group. For Chd binding, 

the regulator chooses H174 to neutralize the anionic charge of the non-conjugated 5β-

cholanoate tail of Chd. Tch and Chd are related in chemical structure and have identical 

charge. Both of these two bile acids are bound by the regulator in the micromolar region. The 

different binding modes of these two bile acids indeed highlight the promiscuity of the 

multiligand-binding tunnel of CmeR. 

Previously, the crystal structure of CmeR was fortuitously resolved in complex with a 

glycerol molecule.16 This structure suggested that at least two distinct binding sites existed 

within the tunnel. Indeed, one of these predicted binding sites was occupied by the bound 

glycerol. Interestingly, the CmeR-bile acid structures indicated that the large molecules of 

Chd and Tch did not span both predicted binding sites, but instead took the distinct second 

site and left the glycerol-binding site unoccupied (Fig. 8). In comparison with the Tch, Chd 

and glycerol-bound structures, it was found that these three complexes displayed almost an 

identical structure (with the center-to-centre distance of 54 Å). To bind the operator DNA, 



www.manaraa.com

 26 

this center-to-center distance has to be less than 40 Å because the distance between two 

consecutive major grooves of B-DNA is 34 Å. Thus, these structures are incompatible with 

the 16 bp IR operator and should correspond to the induced form of the CmeR regulator. On 

the basis of these crystal structures, it is possible that CmeR can accommodate a bile acid and 

a glycerol molecule at the same time (Fig. 8). Such a phenomenon has been previously 

observed with the crystal structure of QacR simultaneously bound to two ligands, proflavin 

and ethidium,19 and has been predicted through biochemical analysis to occur in many other 

proteins, including AcrR,22,23 TtgV24 and MdfA.25 It has also been reported that the QacR 

repressor can bind a single ligand in multiple positions,26 possibly due to the multifaceted 

nature of this protein. Thus, there is a chance that the same ligand could interact with these 

promiscuous multidrug regulators in different orientations within the multifaceted binding 

pockets. 

The plasticity and promiscuity of the multiligand-binding tunnel of CmeR were further 

underscored by these CmeR-ligand complex structures. As mentioned previously, glycerol 

and bile acids have distinct binding sites within the tunnel. In the glycerol-bound structure, 

the bile acid binding site was unoccupied and filled with water molecules. This empty site 

was surrounded with several hydrophobic residues, including F111, I115, F137 and Y139. 

When Tch occupied this bile acid site, which was observed from the CmeR-Tch structure, 

some of these residues were found to significantly change in position. For example, residues 

I115, F137 and Y139, which form the wall of the binding tunnel, appeared to shift outward 

and seemingly participated to expand the internal volume of this binding site, probably 

accommodating the large size of the bile acid (Fig. 9). Interestingly, residue K170, which 

was found to form a hydrogen bond with the bound bile acid, reoriented its side chain to 
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accommodate the ligand. Additional movements were also seen through the side chains of 

H72 and F111. These residues appeared to adjust their orientation to facilitate Tch binding 

(Fig. 9). It is worth noting that the formal negative charge of Tch was not neutralized by 

positively charged residues. Instead, electrostatic neutralization was achieved by interaction 

between the anionic Tch and the positive dipole of the side chain of Q134. Thus, charge-

charge electrostatic interaction is not essential for binding negatively charged ligands. 

Similar drug-regulator interaction has been found in QacR, in which the QacR regulator 

neutralized one end of the positively charged pentamidine by using carbonyl and side chain 

oxygen atoms.27 Interestingly, the bound Chd rather employed another mechanism to 

neutralize its formal negative charge, whereas the anionic pentanoate group was compensated 

by the formal positive charge of H174. 

In summary, the ability of CmeR to bind two very similar bile acids in quite distinct 

manners highlighted the plasticity and promiscuity of the ligand-binding tunnel of this 

regulator. This plasticity is very likely applicable to other multiligand binding proteins, 

including the AcrR multidrug regulator. Further, neutralization of the negatively charged bile 

acids can take place using the proximal positively charge residues or the nearby polar groups. 

The proximal and distinct bile acid and glycerol-binding sites of CmeR highlights the 

capacity of this regulator, whereby the sizeable hydrophobic tunnel indeed consists of 

multiple mini-pockets to accommodate diverse ligands. 

 

Materials And Methods 

Preparation and crystallization of the CmeR-ligand complexes. Recombinant CmeR 

containing a 6xHis tag at the N-terminus was overexpressed in Escherichia coli strain JM109 
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using the pQE30 vector. The cloning, expression and purification procedures have been 

described previously.16,28 The purified protein was extensively dialyzed against buffer 

containing 10 mM Na-phosphate pH 7.2 and 100 mM NaCl and concentrated to 10-15 

mg/mL. Prior to crystallization trials, Tch or Chd was added to the protein solution at a final 

concentration of 2 mM and then incubated overnight at 4°C. The stock solution of Tch was 

prepared by dissolving the sodium salt of Tch (Sigma-Aldrich) in a buffer containing 10 mM 

Na-phosphate pH 7.2. The Chd solution was made by solubilizing cholate acid (Sigma-

Aldrich) in 500 mM NaOH. The resulting solution was then adjusted to a pH of 7.2 with 10 

mM Na-phosphate. 

Crystals of the 6xHis CmeR were crystallized at room temperature using hanging-drop 

vapor diffusion as described.16 Briefly, a 4-µl drop containing equal volume of protein 

solution and reservoir buffer (30% PEG 3350, 0.1 M Tris-HCl pH 8.5 and 0.16 M MgCl2) 

was equilibrated against 500 µl of reservoir buffer. Crystals of apo-CmeR appeared within 

two weeks with typical dimensions of 0.2 × 0.2 × 0.2 mm. The CmeR-Tch and CmeR-Chd 

complex crystals were then prepared by incubating crystals of apo-CmeR in solution 

containing 30% PEG 3350, 0.1 M Tris-HCl pH 8.5, 0.16 M MgCl2, and 10 mM Tch or Chd 

for 24 h at 25°C. 

 

X-ray data collection, processing, and structural refinement. X-ray intensity data were 

collected at 100 K using beamline-24IDC at the Advanced Photon Source. Crystals of 

CmeR-Tch and CmeR-Chd were cryoprotected with a solution containing 32% PEG 3350, 

0.1 M Tris-HCl pH 8.5, 0.16 M MgCl2 and 10 mM of the corresponding bile acid (Tch or 

Chd). Diffraction data sets were processed with DENZO and scaled with SCALEPACK.29 
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Both the CmeR-Tch and CmeR-Chd crystals took the space group of P21212 with unit cell 

dimensions that were isomorphous to the previously determined CmeR-glycerol complex 

(Table I). 

The structures of the CmeR-Tch and CmeR-Chd complexes were determined using the 

PHENIX suite of programs for crystallographic computing.30 The initial phases were 

calculated by molecular replacement as implemented in Phaser31 using the previously 

determined CmeR-glycerol structure (2QCO) with the bound glycerol and water molecules 

removed as the starting model. Based on the simulated annealing electron density omit maps, 

the molecule of the corresponding taurocholate (PDB: tch) or cholate (PDB: chd) was 

manually added into the binding tunnel. Model building was performed using the program 

Coot.32 Refinement of both structures was carried out using CNS33 and PHENIX.30 The final 

model was verified by inspection of the simulated annealing composite omit maps. The 2Fo-

Fc simulated annealing electron density omit maps of the bound Tch and Chd are shown in 

Figures 2 and 4. In the final models of both Tch and Chd bound structures, 100% of the 

residues are within either the most favored or additional allowed regions of the 

Ramachandran plot analysis, as defined by the program PROCHECK.34 

 

Isothermal titration calorimetry. We used ITC to examine the binding of Tch or Chd to the 

purified CmeR regulator. Measurements were performed on a VP-Microcalorimeter 

(MicroCal, Northampton, MA) at 25°C. Before titration, the protein was thoroughly dialyzed 

against buffer containing 10 mM Na-phosphate pH 7.2 and 100 mM NaCl. The protein 

concentration was determined using the Bradford assay. The protein sample was then 

adjusted to a final concentration of 20 µM. Ligand solution consisting of 0.5 mM Tch or Chd 
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in 10 mM Na-phosphate pH 7.2 and 100 mM NaCl was prepared as the titrant. The protein 

and ligand samples were degassed before they were loaded into the cell and syringe. Binding 

experiments were carried out with the protein solution (1.5 mL) in the cell and the ligand as 

the injectant. Ten microliter injections of the ligand solution were used for data collection. 

Injections occurred at intervals of 300 s, and the duration time of each injection was 10 s. 

Heat transfer (µcal/s) was measured as a function of elapsed time (s). The mean enthalpies 

measured from injection of the ligand in the buffer were subtracted from raw titration data 

before data analysis with ORIGIN software (MicroCal). Titration curves were fitted by a 

nonlinear least squares method to a function for the binding of a ligand to a macromolecule. 

Nonlinear regression fitting to the binding isotherm provided us with the equilibrium binding 

constant (KA =1/KD) and enthalpy of binding (ΔH). Based on the values of KA, the change in 

free energy (ΔG) and entropy (ΔS) were calculated with the equation: ΔG = −RT lnKA = 

ΔH−TΔS, where T is 273K and R is 1.9872 cal/K per mol. Calorimetry trials were also 

carried out in the absence of CmeR in the same experimental conditions. No change in heat 

was observed in the injections throughout the experiment.  

 

Fluorescence polarization. FP was used to determine the bile acid binding affinity of 

CmeR. As Tch and Chd are not fluorescent chemicals, we used Clf (BD Biosciences, San 

Jose, CA) as a fluorescent ligand to perform this binding assay. The experiment was done 

using a ligand binding solution containing 10 mM Na-phosphate (pH 7.2), 100 mM NaCl and 

1 µM Clf. The protein solution consisting of CmeR in 10 mM Na-phosphate (pH 7.2), 100 

mM NaCl and 1 µM Clf was titrated into the ligand binding solution until the polarization (P) 

was unchanged. As this is a steady-state approach, fluorescence polarization measurement 
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was taken after a 5 min incubation for each corresponding concentration of the protein and 

bile acid to ensure that the binding has reached equilibrium. All measurements were 

performed at 25°C using a PerkinElmer LS55 spectrofluorometer equipped with a 

Hamamatsu R928 photomultiplier. The excitation and emission wavelengths were 480 and 

517 nm. Fluorescence polarization signal (in ΔP) was measured at the emission wavelength. 

Each titration point recorded was an average of 15 measurements. Data were analyzed using 

the equation, P ={(Pbound – Pfree)[protein]/(KD + [protein])} + Pfree, where P is the polarization 

measured at a given total protein concentration, Pfree is the initial polarization of free ligand, 

Pbound is the maximum polarization of specifically bound ligand, and [protein] is the protein 

concentration. The titration experiments were repeated for three times to obtain the average 

KD value. Curve fitting was accomplished using the program ORIGIN (OriginLab 

Corporation, Northampton, MA).  

 

Accession Numbers. Coordinates and structural factors have been deposited in the Protein 

Data Bank with accession numbers 3HGY (CmeR-taurocholate) and 3HGG (CmeR- 

cholate). 
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bind within the ligand-binding tunnel and interact
with the regulator using a surprisingly novel bind-
ing site. However, the overall conformation of the
bile acid bound CmeR structures are very similar to
that of the CmeR-glycerol structure.

Structure of the CmeR-Taurocholate complex
The crystal structure of the CmeR-Tch complex
(Fig. 1) was refined to 2.20 Å resolution with a final
Rwork of 22.2% and Rfree of 28.4% (Table I), revealing
that Tch binds within the ligand-binding tunnel in a
position adjacent to the previously identified glyc-
erol-binding site. The Tch binding site utilizes a dis-
tinct set of amino acids to accommodate the elon-
gated structure of the bile acid, while leaving the
glycerol-binding site unoccupied. The simulated
annealing electron density omit map of this bound
Tch is illustrated in Figure 2.

The four-ring system of the bound Tch is com-
pletely buried in the CmeR binding tunnel, leaving
its negatively charged 2-aminoethanesulfonate group

in the 5b position oriented at the entry point and
exposed to the solvent. This four-ring skeleton, mim-
icking the steroid backbone, consists of three
hydroxyl groups located at the 3a, 7a, and 12a posi-
tions. The CmeR-Tch structure demonstrates that
the 3a-hydroxyl group in the A ring makes a hydro-
gen bond with the positively charged residue H72
(Fig. 3). The C ring and the 12a-hydroxyl group of
Tch; however, face directly toward helix a8 and sub-
unit interface of the dimer. This orientation facili-
tates the interaction between the 12a-hydroxyl oxy-
gen and H1750 of the next subunit of CmeR,
allowing them to form a second hydrogen bond to
anchor the bound Tch. Interestingly, the repressor
protein further anchors this bound bile acid mole-
cule through a water-mediated hydrogen bond
between K170 of helix a8 and the 7a-hydroxyl group
of the B ring to secure the binding.

Perhaps, the most striking feature for Tch bind-
ing is found at the other end of the molecule which
harbors the anionic, conjugated ethanesulfonate tail.
Tch is bound in such a way that the long 2-aminoe-
thanesulfonate moiety at the 5b position is extended
slightly out of the binding tunnel exposed to the sol-
vent, while still in close enough proximity to interact
with residues forming the entrance of the tunnel.
Within 5 Å of this negatively charged sulfonate
group, there are no positively charged histidines,
lysines or arginines available to neutralize the for-
mal negative charge of this sulfonate moiety.
Instead, this conjugated acidic tail is engaged to
interact with the side chain carbamoyl nitrogen of
residue Q134, thus forming an additional hydrogen
bond to anchor the bound Tch.

Surprisingly, the large molecule of Tch does not
occupy the entire volume of the tunnel. The four-
ring backbone and the 2-aminoethanesulfonate tail
of the bound Tch are not linear in shape, but rather
curve upward and result in a concave conformation.
Thus, the end-to-end length of the molecule is sig-
nificantly shorter than it was expected and only
reaches 16.1 Å. In doing so, CmeR is able to accom-
modate and create a novel bile acid-binding pocket
for Tch. This new binding pocket is distinct from the
previously determined glycerol-binding site. The
bound Tch only spans this Tch-binding site and
several solvent molecules are found in the glycerol-
binding pocket. Thus, it is very likely that the large
ligand-binding tunnel of CmeR could accommodate a
bile acid and a glycerol molecule simultaneously. As
the binding tunnel of CmeR is mostly hydrophobic
in nature, the bound Tch is also found to make
extensive hydrophobic contacts with residues form-
ing the wall of this tunnel. It is observed that at
least 10 hydrophobic amino acids, including four aro-
matic residues (F103, F111, W129 and F137), that
line the inside wall of the tunnel are involved in Tch
binding (Table II).

Figure 1. Structure of a CmeR-ligand complex. (a) Ribbon

diagram of the taurocholate-bound CmeR homodimer

generated by crystallographic symmetry. The taurocholate

is shown as a stick model (green, carbon; blue, nitrogen;

red, oxygen). (b) The hydrophobic binding tunnel of CmeR.

This tunnel was calculated using the program CAVER

(http://www.caver.cz), utilizing the position of residue A108

as a starting point. The binding tunnel on each subunit of

CmeR is colored gray.
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bound CmeR homodimer generated by crystallographic symmetry. The taurocholate is 

shown as a stick model (green, carbon; blue, nitrogen; red, oxygen). (b) The hydrophobic 

binding tunnel of CmeR. This tunnel was calculated using the program CAVER 

(http://www.caver.cz), utilizing the position of residue A108 as a starting point. The binding 
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Structure of the CmeR-Cholate complex
The crystal structure of the CmeR-Chd complex was
refined to a resolution of 2.35 Å, resulting in Rwork

and Rfree of 20.0% and 26.3%, respectively (Table I).
This structure revealed that the binding mode for
Chd, which differs from Tch by its 5b-cholanoate
group, is very distinct. Figure 4 illustrates the simu-
lated annealing electron density omit map of this

bound Chd. Surprisingly, the bound Chd was found
to orient in an opposite direction when compared
with Tch. Thus, the bound Chd and Tch are anti-
parallel to each other. For Chd binding, Chd is com-
pletely buried within the hydrophobic tunnel in a
way that its non-conjugated 5b-cholanoate tail is
inserted into the end of the tunnel, leaving its four-
ring steroid backbone anchored closer to the entrance.

Table I. Crystallographic Data and Refinement Statistics

CmeR-Tch CmeR-Chd

A. Data collection
Wavelength (Å) 0.9792 0.9792
Space group P21212 P21212
Cell constants (Å) a ¼ 94.0, b ¼ 37.8, c ¼ 57.6 a ¼ 94.0, b ¼ 37.4, c ¼ 57.8
Resolution (Å) 2.20 (2.28-2.20) 2.35 (2.43-2.35)
Completeness (%) 99.8 (99.2) 98.4 (99.2)
Total no. of reflections 227,441 286,493
No. of Unique reflections 11,011 8,984
Redundancy 4.7 3.2
Rmerge (%)a 4.5 (22.5) 6.3 (42.1)
hI/r(I)i 36.4 (5.0) 17.9 (2.1)

B. Refinement
Rwork (%) 22.2 20.0
Rfree (%) 28.4 26.3
hBi
Overall (Å2) 45.6 43.6
Protein (Å2) 45.0 43.1
Ligand (Å2) 73.1 57.8
Water (Å2) 43.9 40.9

No. of ligands 1 1
No. of waters 54 60

Rms deviations
Bond angles (") 1.0 1.3
Bond length (Å) 0.006 0.009

Ramachandran analysis
Most favored regions (%) 93.5 93.0
Allowed regions (%) 6.5 7.0
Generously allowed regions (%) 0.0 0.0
Disallowed regions (%) 0.0 0.0

Rmerge ¼
P

hkl

P
j
Ihkl;j# Ihklh ij jP

hkl

P
j
Ihkl;j

, where Ihkl,j is the jth intensity measurement of reflection hkl and hIhkli is the aver-

age intensity from multiple observation.

Figure 2. Stereo view of the simulated annealing electron density map of the bound taurocholate. The bound taurocholate in

the left subunit of dimeric CmeR (the orientation corresponds to Fig. 1) is shown as a stick model (green, carbon; blue,

nitrogen; red, oxygen). The 2Fo-Fc simulated annealing omit map is contoured at 1.2 r (blue mesh). The electron density for

the surrounding protein has been deleted. The surrounding secondary structural elements are shown as yellow ribbons.

Lei et al. PROTEIN SCIENCE VOL 20:712—723 715
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Resolution (Å) 2.20 (2.28-2.20) 2.35 (2.43-2.35)
Completeness (%) 99.8 (99.2) 98.4 (99.2)
Total no. of reflections 227,441 286,493
No. of Unique reflections 11,011 8,984
Redundancy 4.7 3.2
Rmerge (%)a 4.5 (22.5) 6.3 (42.1)
hI/r(I)i 36.4 (5.0) 17.9 (2.1)

B. Refinement
Rwork (%) 22.2 20.0
Rfree (%) 28.4 26.3
hBi
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Figure 2. Stereo view of the simulated annealing electron density map of the bound 

taurocholate. The bound taurocholate in the left subunit of dimeric CmeR (the orientation 

corresponds to Fig. 1) is shown as a stick model (green, carbon; blue, nitrogen; red, oxygen). 

The 2Fo-Fc simulated annealing omit map is contoured at 1.2 σ (blue mesh). The electron 

density for the surrounding protein has been deleted. The surrounding secondary structural 

elements are shown as yellow ribbons.  
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In this manner, the anionic pentanoate moiety of
Chd directly interacts with the positively charged
H174 of helix a9 through a water-mediated hydro-
gen bond to anchor this bile acid (Fig. 5). Unlike
Tch, in which its anionic ethanesulfoate group is sta-
bilized by charge-dipole interaction, the structure of
CmeR-Chd suggests that the negatively charged end
of Chd is neutralized by this positively charged histi-
dine residue via a water-mediated hydrogen bond.
Important interactions have been found to establish
at the 3a, 7a and 12a-hydroxyl groups of the four-
ring system. The 3a and 7a-hydroxyl groups contrib-
ute two hydrogen bonds with C166 and H1750,

respectively, to stabilize the steroid backbone. How-
ever, the 12a-hydroxyl moiety participates to form
two water-mediated hydrogen bonds with C69 and
K170 to further secure the binding. The bound Chd
molecule is significantly curved upward and exhibits
a boat-like conformation. As a result, the end-to-end
length of the molecule is only 11.5 Å. The curved
Chd also makes interactions with 11 additional
amino acids, including five aromatic residues (F103,
F111, W129, F137 and Y139) that create the wall of
the tunnel (Table II).

Overall, Chd and Tch share the same ligand-bind-
ing pocket. These bile acids do not span the entire

Figure 3. The taurocholate binding site. (a) Amino acid residues within 4.2 Å from the bound taurocholate (green, carbon;

blue, nitrogen; red, oxygen; orange, sulfur). The side chains of selected residues are shown as gray sticks (gray, carbon; blue,

nitrogen; red, oxygen). Residues from the next subunit of CmeR are shown as magenta sticks (magenta, carbon; blue,

nitrogen; red, oxygen). A water molecule (OW) hydrogen-bonded with the bound taurocholate is shown as red sphere. (b)

Schematic representation of the CmeR and taurocholate interactions shown in panel a. Dotted lines depict the hydrogen

bonds. The hydrogen-bonded distances are also indicated in this figure.

716 PROTEINSCIENCE.ORG CmeR-Bile Acid Complex Structures

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The taurocholate binding site. (a) Amino acid residues within 4.2 Å from the 

bound taurocholate (green, carbon; blue, nitrogen; red, oxygen; orange, sulfur). The side 

chains of selected residues are shown as gray sticks (gray, carbon; blue, nitrogen; red, 

oxygen). Residues from the next subunit of CmeR are shown as magenta sticks (magenta, 

carbon; blue, nitrogen; red, oxygen). A water molecule (OW) hydrogen-bonded with the 

bound taurocholate is shown as red sphere. (b) Schematic representation of the CmeR and 

taurocholate interactions shown in panel a. Dotted lines depict the hydrogen bonds. The 

hydrogen-bonded distances are also indicated in this figure. 
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tunnel, but rather bend into a concave structure. In
this conformation, these bile acids occupy a novel dis-
tinct binding site that is not overlapped with the pre-
viously determined glycerol-binding site (Figs. 3 and
5). Based on the structures of CmeR-bile acid com-
plexes, it is observed that the glycerol-binding site in
the tunnel remains unoccupied upon bile acid binding.
Instead, several solvent molecules are found in this
glycerol site. Thus, it is very likely that the large

ligand-binding tunnel of CmeR could accommodate a
bile acid and a glycerol molecule simultaneously. Tch
and Chd are structurally related, differing only by the
anionic charged group. Nonetheless, these two bile
acids bind distinctly in the binding tunnel. These dis-
tinct binding modes indeed underscore the promiscu-
ity of the multifaceted binding pocket of CmeR.

CmeR-bile acid interactions
The binding affinity of each bile acid for the CmeR
regulator was determined using isothermal titration
calorimetry (ITC), which obtained dissociation con-
stants, KDs, of 1.5 6 0.1 lM for Tch and 2.5 6 0.1
lM for Chd. In each case, the titration is character-
ized by a negative enthalpic contribution, which
gives rise to a hyperbolic binding curve (Fig. 6). As
expected, the thermodynamic parameters of binding
of each bile acid to CmeR are similar, with Tch and
Chd displaying enthalpic (DH) contributions of
!59 6 1 kcal/mol and -44 6 4 kcal/mol, respectively.
Similar entropic contributions have also been found
through these titrations, with DS(Tch) ¼ 8 cal mol
deg!1 and DS(Chd) ¼ 10 cal mol deg!1. The stoichio-
metries of bile acid binding observed with ITC
ranged from 0.9 to 1.0 (bile acid/CmeR monomer).

Figure 7(a) illustrates the binding isotherm of
CmeR in the presence cholyl-lysyl-fluorescein (Clf, a
fluorescein-labeled bile acid) using fluorescence
polarization (FP). As presented in the figure, a sim-
ple hyperbolic curve was observed for the binding of
Clf with a dissociation constant, KD, of 50.2 6
0.4 lM. A Hill plot of the data yielded a Hill coeffi-
cient of 1.07 6 0.03 [Fig. 7(b)], suggesting a simple
drug binding process with a stoichiometry of one
CmeR monomer per Clf ligand. These results indeed
are in good agreement with the crystal structure
that each monomer of CmeR binds one bile acid in
the binding tunnel.

Table II. CmeR-ligand Contacts Contacts Within 4.2 Å
of Any Ligands are Listed

CmeR residues

Distance (Å)

Taurocholate Cholate Glycerol

L65 3.5
I68 4.1
C69 4.0
H72 2.9
F99 3.7
F103 3.2 3.7 3.4
A108 3.5 3.0
F111 4.1 3.9
G112 3.4
I115 4.0 4.0
W129 3.6 3.3
Q134 2.9
F137 4.0 3.6 3.8
S138 3.1
Y139 4.0 3.3
C166 2.9 4.0
V163 3.8
K170 4.2
H174 4.0
P1720 3.8
H1750 3.1 3.0
L1760 4.0
L1790 4.0 4.2
V163. . .OW/OW. . .Gol 3.0/2.9
T167. . .OW/OW. . .Gol 3.2/2.9
C69. . .OW/OW. . .Tch/Chd 3.0/2.9
K170. . .OW/OW. . .Tch/Chd 2.9/2.8 2.9/3.1
H174. . .OW/OW. . .Tch/Chd 2.7/3.0

Figure 4. Stereo view of the simulated annealing electron density map of the bound cholate. The bound cholate in the left

subunit of dimeric CmeR (the orientation corresponds to Fig. 1) is shown as a stick model (green, carbon; blue, nitrogen; red,

oxygen). The 2Fo-Fc simulated annealing omit map is contoured at 1.2 r (blue mesh). The electron density for the surrounding

protein has been deleted. The surrounding secondary structural elements are shown as yellow ribbons.
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this conformation, these bile acids occupy a novel dis-
tinct binding site that is not overlapped with the pre-
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ple hyperbolic curve was observed for the binding of
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0.4 lM. A Hill plot of the data yielded a Hill coeffi-
cient of 1.07 6 0.03 [Fig. 7(b)], suggesting a simple
drug binding process with a stoichiometry of one
CmeR monomer per Clf ligand. These results indeed
are in good agreement with the crystal structure
that each monomer of CmeR binds one bile acid in
the binding tunnel.

Table II. CmeR-ligand Contacts Contacts Within 4.2 Å
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Figure 4. Stereo view of the simulated annealing electron density map of the bound cholate. The bound cholate in the left

subunit of dimeric CmeR (the orientation corresponds to Fig. 1) is shown as a stick model (green, carbon; blue, nitrogen; red,

oxygen). The 2Fo-Fc simulated annealing omit map is contoured at 1.2 r (blue mesh). The electron density for the surrounding

protein has been deleted. The surrounding secondary structural elements are shown as yellow ribbons.
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Discussion
With the rising incidences of MDR strains of bacte-
ria, it has become increasingly important to under-
stand how individual proteins are able to recognize
such diverse substrates. The crystal structures of
the QacR multidrug binding protein in complex with
its respective ligands have provided many insights
into the mechanism of multidrug binding,18,19 but
these reports have primarily involved positively
charged compounds. The CmeR-bile acid complexes
reveal how a TetR family protein specifically inter-
acts with negatively charged ligands. To this point,
the crystal structure of MarR-salicylate has provided
evidence on how regulatory proteins recognize ani-
onic compounds.20 The negatively charged salicylate
binds to MarR within a solvent exposed crevice,
rather than a large pocket, and interacts with argi-

nines to neutralize its formal charge. The binding
crevice lacks the familiar aromatic residues that are
critically important in other multidrug binding pro-
teins. It is intriguing that the multidrug binding
protein TtgR seems to utilize a different mechanism
to recognize negatively charged antibiotics and plant
antimicrobials.21 The hydrophobic environment is
provided in the ligand binding pocket at the C-termi-
nal regulatory domain. In addition, a positively
charged histidine and a polar asparagine are also
found to involve in the binding. For CmeR, this reg-
ulator seems to share a similar mechanism with
TtgR to recognize negatively charged bile acids.
Within the multifaceted binding tunnel there are at
least seven aromatic residues, five phenylalanines,
one tyrosine and one tryptophan, lining the hydro-
phobic surface to accommodate staking interactions

Figure 5. The cholate binding site. (a) Amino acid residues within 4.2 Å from the bound cholate (green, carbon; blue,

nitrogen; red, oxygen). The side chains of selected residues are shown as gray sticks (gray, carbon; blue, nitrogen; red,

oxygen). Residues from the next subunit of CmeR are shown as magenta sticks (magenta, carbon; blue, nitrogen; red,

oxygen). (b) Schematic representation of the CmeR and cholate interactions shown in panel a. Dotted lines depict the

hydrogen bonds. The hydrogen-bonded distances are also indicated in this figure.
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with the ligands. In addition, cationic amino acids
are observed to involve in bile acid binding. In fact,
within the binding tunnel of CmeR, there are four
positively charged residues, including H72, K170,
H174 and H1750 (Table II). These residues, which
underscore the diversity of the CmeR binding tun-
nel, probably function to neutralize charges and
accommodate the binding of anionic and neutral
ligands. This phenomenon is clearly demonstrated in
the structures of CmeR-Tch and CmeR-Chd, in
which the negatively charged ligands are secured in
the binding tunnel by several of these cationic resi-
dues. Surprisingly, the two elongated bile acids did
not bind in the same orientation inside the tunnel of
CmeR, but were actually bound anti-parallel to each
other. Chd was bound in an orientation where its A
ring was located close to the tunnel opening. How-
ever, the bound Tch molecule displayed a contrasting
orientation, whereby the corresponding A ring was
buried deeply inside the far end of the tunnel.
Because of the difference in orientation, the con-
served four-ring systems of Tch and Chd were found

to bind in different environments. Intriguingly, only
two positively charged residues are found to com-
monly used in the binding of Tch and Chd. Residues
K170 and H1750 form important hydrogen bonds to
secure the steroid backbones of Tch and Chd. In the
case of Tch, CmeR further anchors the steroid back-
bone of this ligand by using the positively charged
H72 residue to form an additional hydrogen bond
with the 3a-hydroxyl group. For Chd binding, the
regulator chooses H174 to neutralize the anionic
charge of the non-conjugated 5b-cholanoate tail of
Chd. Tch and Chd are related in chemical structure
and have identical charge. Both of these two bile
acids are bound by the regulator in the micromolar
region. The different binding modes of these two bile
acids indeed highlight the promiscuity of the multili-
gand-binding tunnel of CmeR.

Previously, the crystal structure of CmeR was
fortuitously resolved in complex with a glycerol mol-
ecule.16 This structure suggested that at least two
distinct binding sites existed within the tunnel.
Indeed, one of these predicted binding sites was
occupied by the bound glycerol. Interestingly, the
CmeR-bile acid structures indicated that the large
molecules of Chd and Tch did not span both pre-
dicted binding sites, but instead took the distinct
second site and left the glycerol-binding site unoccu-
pied (Fig. 8). In comparison with the Tch, Chd and
glycerol-bound structures, it was found that these
three complexes displayed almost an identical struc-
ture (with the center-to-centre distance of 54 Å). To

Figure 6. Representative isothermal titration calorimetry for

the binding of taurocholate to CmeR. (a) Each peak

corresponds to the injection of 10 lL of 0.5 mM Tch in

buffer containing 10 mM Na-phosphate (pH 7.2) and 100

mM NaCl into the reaction containing 20 lM CmeR in the

same buffer. (b) Cumulative heat of reaction is displayed as

a function of the injection number. The solid line is the

least-square fit to the experimental data, giving a KD of

1.5 6 0.1 lM.

Figure 7. Fluorescence polarization of CmeR with cholyl-

lysyl-fluorescein. (a) Binding isotherm of CmeR with cholyl-

lysyl-fluorescein, showing a KD of 50.2 6 0.4 lM, in buffer

containing 10 mM Na-phosphate (pH 7.2) and 100 mM

NaCl. (b) Hill plot of the data obtained for cholyl-lysyl-

fluorescein binding to CmeR. a corresponds to the fraction

of bound cholyl-lysyl-fluorescein. The plot gives a slope of

1.07 6 0.03, indicating a simple binding process with no

cooperativity. The interception of the plot provides a KD of

51.1 6 7.7 lM for the cholyl-lysyl-fluorescein binding.
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Figure 7. Fluorescence polarization of CmeR with cholyl-lysyl-fluorescein. (a) Binding 

isotherm of CmeR with cholyl-lysyl-fluorescein, showing a KD of 50.2 ± 0.4 µM, in buffer 

containing 10 mM Na-phosphate (pH 7.2) and 100 mM NaCl. (b) Hill plot of the data 

obtained for cholyl-lysyl-fluorescein binding to CmeR. a corresponds to the fraction of 

bound cholyl-lysyl-fluorescein. The plot gives a slope of 1.07 ± 0.03, indicating a simple 

binding process with no cooperativity. The interception of the plot provides a KD of 51.1 ± 

7.7 µM for the cholyl-lysyl-fluorescein binding.  
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bind the operator DNA, this center-to-center dis-
tance has to be less than 40 Å because the distance
between two consecutive major grooves of B-DNA is
34 Å. Thus, these structures are incompatible with
the 16 bp IR operator and should correspond to the
induced form of the CmeR regulator. On the basis of
these crystal structures, it is possible that CmeR can
accommodate a bile acid and a glycerol molecule at
the same time (Fig. 8). Such a phenomenon has
been previously observed with the crystal structure
of QacR simultaneously bound to two ligands, profla-
vin and ethidium,19 and has been predicted through
biochemical analysis to occur in many other pro-
teins, including AcrR,22,23 TtgV24 and MdfA.25 It has
also been reported that the QacR repressor can bind
a single ligand in multiple positions,26 possibly due
to the multifaceted nature of this protein. Thus,
there is a chance that the same ligand could interact
with these promiscuous multidrug regulators in dif-
ferent orientations within the multifaceted binding
pockets.

The plasticity and promiscuity of the multili-
gand-binding tunnel of CmeR were further under-
scored by these CmeR-ligand complex structures. As
mentioned previously, glycerol and bile acids have

distinct binding sites within the tunnel. In the glyc-
erol-bound structure, the bile acid binding site was
unoccupied and filled with water molecules. This
empty site was surrounded with several hydrophobic
residues, including F111, I115, F137 and Y139.
When Tch occupied this bile acid site, which was
observed from the CmeR-Tch structure, some of
these residues were found to significantly change in
position. For example, residues I115, F137 and
Y139, which form the wall of the binding tunnel,
appeared to shift outward and seemingly partici-
pated to expand the internal volume of this binding
site, probably accommodating the large size of the
bile acid (Fig. 9). Interestingly, residue K170, which
was found to form a hydrogen bond with the bound
bile acid, reoriented its side chain to accommodate
the ligand. Additional movements were also seen
through the side chains of H72 and F111. These resi-
dues appeared to adjust their orientation to facilitate
Tch binding (Fig. 9). It is worth noting that the for-
mal negative charge of Tch was not neutralized by
positively charged residues. Instead, electrostatic
neutralization was achieved by interaction between
the anionic Tch and the positive dipole of the side
chain of Q134. Thus, charge-charge electrostatic

Figure 8. Stereo view of the bile acid and glycerol-binding sites of CmeR. This is a composite figure showing the locations of

the bound ligands in the ligand binding tunnel of the (a) left and (b) right subunits of the CmeR dimer. The ligands shown in

stick models are taurocholate (yellow), cholate (blue) and glycerol (red). The hydrophobic binding tunnel is colored gray. The

surrounding secondary structural elements, based on the structure of the CmeR-glycerol complex, are shown as green

ribbons.
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interaction is not essential for binding negatively
charged ligands. Similar drug-regulator interaction
has been found in QacR, in which the QacR regulator
neutralized one end of the positively charged pentami-
dine by using carbonyl and side chain oxygen atoms.27

Interestingly, the bound Chd rather employed another
mechanism to neutralize its formal negative charge,
whereas the anionic pentanoate group was compen-
sated by the formal positive charge of H174.

In summary, the ability of CmeR to bind two very
similar bile acids in quite distinct manners high-
lighted the plasticity and promiscuity of the ligand-
binding tunnel of this regulator. This plasticity is very
likely applicable to other multiligand binding proteins,
including the AcrR multidrug regulator. Further, neu-
tralization of the negatively charged bile acids can
take place using the proximal positively charge resi-
dues or the nearby polar groups. The proximal and
distinct bile acid and glycerol-binding sites of CmeR
highlights the capacity of this regulator, whereby the
sizeable hydrophobic tunnel indeed consists of multi-
ple mini-pockets to accommodate diverse ligands.

Materials and Methods

Preparation and crystallization of the
CmeR-ligand complexes
Recombinant CmeR containing a 6xHis tag at the
N-terminus was overexpressed in Escherichia coli
strain JM109 using the pQE30 vector. The cloning,

expression and purification procedures have been
described previously.16,28 The purified protein was
extensively dialyzed against buffer containing
10 mM Na-phosphate pH 7.2 and 100 mM NaCl and
concentrated to 10-15 mg/mL. Prior to crystallization
trials, Tch or Chd was added to the protein solution
at a final concentration of 2 mM and then incubated
overnight at 4!C. The stock solution of Tch was pre-
pared by dissolving the sodium salt of Tch (Sigma-
Aldrich) in a buffer containing 10 mM Na-phosphate
pH 7.2. The Chd solution was made by solubilizing
cholate acid (Sigma-Aldrich) in 500 mM NaOH. The
resulting solution was then adjusted to a pH of
7.2 with 10 mM Na-phosphate.

Crystals of the 6xHis CmeR were crystallized at
room temperature using hanging-drop vapor diffu-
sion as described.16 Briefly, a 4-lL drop containing
equal volume of protein solution and reservoir buffer
(30% PEG 3350, 0.1 M Tris-HCl pH 8.5 and 0.16 M
MgCl2) was equilibrated against 500 ll of reservoir
buffer. Crystals of apo-CmeR appeared within
two weeks with typical dimensions of 0.2 " 0.2 "
0.2 mm. The CmeR-Tch and CmeR-Chd complex
crystals were then prepared by incubating crystals
of apo-CmeR in solution containing 30% PEG 3350,
0.1 M Tris-HCl pH 8.5, 0.16 M MgCl2, and 10 mM
Tch or Chd for 24 h at 25!C.

X-ray data collection, processing, and
structural refinement
X-ray intensity data were collected at 100 K using
beamline-24IDC at the Advanced Photon Source.
Crystals of CmeR-Tch and CmeR-Chd were cryopro-
tected with a solution containing 32% PEG 3350,
0.1 M Tris-HCl pH 8.5, 0.16 M MgCl2 and 10 mM of
the corresponding bile acid (Tch or Chd). Diffraction
data sets were processed with DENZO and scaled
with SCALEPACK.29 Both the CmeR-Tch and
CmeR-Chd crystals took the space group of P21212
with unit cell dimensions that were isomorphous to
the previously determined CmeR-glycerol complex
(Table I).

The structures of the CmeR-Tch and CmeR-Chd
complexes were determined using the PHENIX suite
of programs for crystallographic computing.30 The
initial phases were calculated by molecular replace-
ment as implemented in Phaser31 using the previ-
ously determined CmeR-glycerol structure (2QCO)
with the bound glycerol and water molecules
removed as the starting model. Based on the simu-
lated annealing electron density omit maps, the mol-
ecule of the corresponding taurocholate (PDB: tch)
or cholate (PDB: chd) was manually added into the
binding tunnel. Model building was performed using
the program Coot.32 Refinement of both structures
was carried out using CNS33 and PHENIX.30 The
final model was verified by inspection of the simu-
lated annealing composite omit maps. The 2Fo-Fc

Figure 9. The change in conformation of the binding

residues. This is a composite figure showing the

conformational change of the side chains H72, F111, I115,

F137, Y139, and K170 to accommodate ligand binding. The

structural elements of CmeR-glycerol, CmeR-Tch and

CmeR-Chd are colored green, yellow and pink,

respectively.
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CHAPTER 3. CRYSTAL STRUCTURES OF CUSC REVIEW CONFORMATIONAL 

CHANGES ACCOMPANYING FOLDING AND TRANSMEMBRANE CHANNEL 

FORMATION 

A paper published in Journal of Molecular Biology, 2014, 426, 403–411 

 

Hsiang-Ting Lei, Jani Reddy Bolla, Nicholas R. Bishop, Chih-Chia Su  

and Edward W. Yu 

 

Abstract 

Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux 

complexes in the RND (resistance–nodulation–cell division) family to expel diverse toxic 

compounds from the cell. These complexes span both the inner and outer membranes of the 

bacterium via an α-helical, inner membrane transporter; a periplasmic membrane fusion 

protein; and a β-barrel, outer membrane channel. One such efflux system, CusCBA, is 

responsible for extruding biocidal Cu(I) and Ag(I) ions. To remove these toxic ions, the 

CusC outer membrane channel must form a β-barrel structural domain, which creates a pore 

and spans the entire outer membrane. We here report the crystal structures of wild-type 

CusC, as well as two CusC mutants, suggesting that the first N-terminal cysteine residue 

plays an important role in protein–membrane interactions and is critical for the insertion of 

this channel protein into the outer membrane. These structures provide insight into the 

mechanisms on CusC folding and transmembrane channel formation. It is found that the 

interactions between CusC and membrane may be crucial for controlling the opening and 

closing of this β-barrel, outer membrane channel. 
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Introduction 

Integral membrane proteins are very hydrophobic and cannot be dissolved in aqueous 

solution. These proteins can be divided into two distinct structural classes: α-helical bundles 

and β-barrels. The β-barrel membrane proteins are often found in the outer membranes of 

Gram-negative bacteria and mitochon- dria, whereas the α-helical membrane proteins are 

commonly located in the inner membranes of bacteria and in plasma membranes. 

Approximately, one-third of all proteomes accounted for are embedded in biological 

membranes [1]. 

Efflux pumps of the RND (resistance–nodulation– cell division) superfamily are 

ubiquitous in bacteria, archaea and eukaryotes. In Gram-negative bacteria, these RND pumps 

play major roles in the intrinsic and acquired tolerance of antibiotics and toxic compounds 

[2,3]. They are the key components utilized by Gram-negative pathogens in overcoming 

toxic environments that are otherwise unfavorable for their survival. An RND-type efflux 

pump [4–11] is an α-helical, inner membrane protein. It typically works with a periplasmic 

membrane fusion protein [12–18] and a β-barrel, outer membrane channel to form a 

functional tripartite protein complex [19,20]. The resulting efflux complex spans both the 

inner and outer membranes of Gram-negative bacterium to export substrates directly from the 

cell [2,3]. This process is driven by proton import, which is catalyzed by the inner membrane 

RND efflux pump. 

Escherichia coli CusA is a large α-helical, inner membrane RND-type, heavy-metal 

efflux pump that is responsible for extruding the biocidal Cu(I) and Ag(I) ions [21,22]. CusA 

operates with a periplasmic membrane fusion protein (CusB) and a β-barrel, outer membrane 
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channel (CusC) to form a functional protein complex. The resulting CusCBA three-part 

efflux system spans the entire cell envelope and confers resistance to Cu(I) and Ag(I) by 

exporting these metal ions directly out of the cell [21,22]. 

The crystal structures of each individual component of this tripartite complex system 

have been deter- mined. The structure of CusA suggests that this RND pump exists as a 

homotrimer [11]. Each subunit of CusA consists of 12 transmembrane α-helices (TM1– 

TM12) and a large periplasmic domain formed by two periplasmic loops between TM1 and 

TM2 and between TM7 and TM8, respectively. The periplasmic domain of CusA can be 

divided into a pore domain (comprising sub-domains PN1, PN2, PC1 and PC2) and a CusC 

docking domain (containing sub-domains DN and DC). The structures indicate that this 

transporter utilizes methionine pairs and clusters to bind and export Cu(I) and Ag(I) ions 

[11]. 

Overall, the structure of CusB demonstrates that this adaptor protein is folded into a 

four-domain elongated structure, ~120 Å long and ~40 Å wide [16]. The first three domains 

(domains 1–3) of the protein are mostly β-strands. However, the fourth domain (domain 4) is 

all α-helices and is folded into a three-helix-bundle structure. 

Interestingly, the co-crystal structure of the CusBA adaptor–transporter reveals that 

the trimeric CusA pump associates with six CusB molecules to form the CusB6–CusA3 

complex [23,24]. Thus, the entire tripartite efflux assembly is expected to be in the form of 

CusC3–CusB6–CusA3, which span both the inner and outer membranes of E. coli to export 

Cu(I) and Ag(I) ions. This assemblage is indeed in good agreement with the predicted 3:6:3 

polypeptide ratios of these tripartite complexes [25,26]. 
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Recently, the crystal structure of the CusC channel has also been resolved [20], 

suggesting that the architecture of this protein resembles those of TolC [19] and OprM [27]. 

The trimeric CusC channel consists of a membrane-anchoring β-barrel domain and an 

elongated periplasmic α-helical tunnel [20]. The periplasmic tunnel is ~100 Å long with an 

outermost diameter of ~ 35 Å at the tip of the tunnel. 

It is interesting to note that the N-terminal end of CusC forms an elongated loop. This 

loop extends from the membrane surface and leads down to the middle section (equatorial 

domain) of the α-helical periplasmic domain. The first N-terminal residue of CusC is a 

cysteine (Cys1). It has been observed that this residue is covalently linked to the lipid 

elements at the inner leaflet of the outer membrane. We reasoned that this Cys1 residue may 

play an important role in protein–membrane interaction and could be critical for the insertion 

of this channel protein into the outer membrane. We thus removed the Cys1 residue of CusC 

to form the ΔC1 mutant. We also replaced this residue by a serine to create the C1S mutant 

channel. Here we report the crystal structures of the wild-type CusC outer membrane 

channel, as well as the ΔC1 and C1S mutant channels. In comparison with these three 

structures, it is suggested that the Cys1 residue indeed plays a crucial role in anchoring the 

trans- membrane β-barrel onto the outer membrane. These structures also indicate that the 

ΔC1 and C1S mutants should represent the unstructured intermediate state of these β-barrel 

channel proteins. 

 

Results 

Crystal structure of the wild-type CusC channel protein 
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We cloned, expressed and purified the wild-type, ΔC1 and C1S CusC proteins. Each of these 

proteins contains a 6×His at the C-terminus. We obtained crystals of all these three channels 

using vapor diffusion.  

Data collection and refinement statistics of these CusC crystals are summarized in Table 1. 

The crystal structure of the wild-type CusC channel was resolved to a resolution of 2.09 Å 

(Fig. 1a). The final structure is nearly identical with the structure of CusC (PDB code: 3PIK) 

[20] determined by Kulathila et al. Superimposition of these two structures results in an 

RMSD of 0.28 Å for 429 Cα atoms. CusC exists as a homotrimer that forms an ~ 130-Å-long 

α/β barrel. Each subunit of CusC contains four β-strands (contributing to the 12-stranded 

outer membrane β-barrel) and nine α-helices (forming the elongated periplasmic α-barrel) 

(Figs. 1b and S1 and S2). The trimeric CusC channel creates a large cylindrical internal 

cavity of ~28,000 Å [3]. Like the previous crystal structure of CusC [20], our X-ray structure 

suggests that the N-terminal Cys1 residue is covalently linked to the outer membrane via a 

thioester bond. Thus, the trimeric CusC channel is most likely triacylated through the Cys1 

residue to secure the anchoring of this protein onto the outer membrane. 

 

Crystal structure of the ΔC1 CusC mutant 

The crystal structure of the ΔC1 CusC channel was determined to a resolution of 2.53 Å 

(Figs. 1c and S3). The final ΔC1 mutant model consists of the complete mature protein 

sequence, with the exception of the disordered residues 21–31 and 99–129. Intriguingly, the 

overall structure of the ΔC1 mutant is very distinct from that of wild-type CusC. Superim- 

position of a protomer of these two structures gives a high RMSD of 22.49 Å (for 378 Cα 

atoms), suggesting highly significant differences between these two channels (Fig. 2). In ΔC1 
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CusC, the amino acids that form the four transmembrane β-strands in the wild-type structure 

adopt a dramatically different conformation. The majority of these residues appear to be 

unstructured and form two large random loops. Residues 290–326, which form the 

transmembrane β-strands S3 and S4 in the wild-type structure, are found to flip down to the 

outermost surface of the periplasmic α-helical tunnel. In addition, the top portion of the 

vertical periplasmic α-helices, H7 and H8, make substantial changes and are found to bend 

downward to accommodate for the change in conformation. Residues N276 of H7 and N334 

of H8 appear to form hinges for the bending. 

Interestingly, the drastic changes in conformation described above are accompanied by the 

structural changes of residues 84–116, which form the transmembrane β-strands S1 and S2 of 

the wild-type CusC channel. In the ΔC1 mutant, the electron density map in the region 

between residues 82 and 111 is very unclear, suggesting that the majority of the secondary 

structure of this area is disordered. Thus, this region, located at the innermost surface of the 

periplasmic α-helical tunnel, also creates a large random loop in the ΔC1 mutant. Similar to 

the case of helices H7 and H8, the top portion of the vertical periplasmic α-helices, H3 and 

H4, also bend downward and the hinges are found in nearby residues N76 and T137. 

Excluding these areas, the remaining tertiary fold of the ΔC1 CusC monomer is very similar 

to that of a promoter of the wild-type CusC. However, ΔC1 crystallized as a monomer with 

two molecules in the asymmetric unit (Figs. S3 and S4). The structure suggests that the ΔC1 

mutant is monomeric. This monomeric ΔC1 CusC mutant is mostly α-helical, forming an 

~95-Å-long secondary structure. 

 

Crystal structure of the C1S CusC mutant 
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The crystal structure of the C1S mutant was determined to a resolution of 2.69 Å (Figs. 1d 

and S5). Overall, the structural model of the C1S mutant is nearly identical with that of the 

ΔC1 CusC channel. Like ΔC1, gel filtration suggests that the C1S mutant is also monomeric 

in nature (Fig. S6). Superimposition of these two structures gives an overall RMSD of 0.37 Å 

(for 381 Cα atoms). Again, the monomer's four-stranded antiparallel β-sheet, which packs 

against one another to form the 12-stranded transmembrane β-barrel of the wild-type trimeric 

CusC channel, does not seem to exist in this mutant structure. Similar to the ΔC1 mutant, the 

residues that are supposed to form the four-stranded β-sheet contribute to two independent 

random loops. One of these loops is found at the position that is supposed to form the upper 

portion of the innermost core of the periplasmic α-helical tunnel. Another loop is located at 

the outermost core of the upper portion of this periplasmic tunnel. 

The structural difference between wild-type CusC and ΔC1 or C1S suggests that the α-helical 

tunnels of the wild type and these mutant channels are in different conformational states. 

Superimposition of the periplasmic α-helical domains of wild-type CusC and ΔC1 indicates 

that the conformations of helices H8 and H9 on these two structures are significantly 

different. It is found that helices H8 and H9 shift their positions in the ΔC1 mutant in 

comparison to those of the wild type. When each protomer of the wild-type CusC trimer is 

superimposed with the ΔC1 mutant, the change in conformation between the wild-type and 

ΔC1 proteins can be interpreted as an outward swing of H8 and H9 at the periplasmic tip of 

the α-helical tunnel from the structure of the wild-type CusC trimer to adopt the 

conformational state of ΔC1 (Fig. 2). This conformational shift results in the opening of the 

channel of the periplasmic tunnel. As the structure of the wild-type CusC trimer represents a 

closed form of the channel [20], the conformation of the α-helical tunnel of the ΔC1 and C1S 
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mutants may correspond to the open state of the channel. If this is the case, then the 

interaction between the β-barrel residues and outer membrane may be critical for controlling 

the opening and closing of the CusC channel. 

 

Discussion 

In our protein expression system, a CusC signaling peptide was included at the N-terminus of 

each target protein. Thus, each protein, including the wild-type CusC and mutants ΔC1 and 

C1S, should secrete to the periplasm. To ensure that the harvested CusC proteins were 

attached to or anchored to the E. coli outer membrane, and not the inner membrane, we 

performed a pre-extraction procedure using 0.5% sodium lauroyl sarcosinate [28] to 

selectively dissolve and remove proteins of the inner membrane (see Materials and Methods). 

The undissolved outer membrane constituents, containing the corresponding CusC outer 

membrane proteins, were then collected by ultracentrifugation before protein extraction. As 

all of our CusC proteins were extracted from the outer membrane pellets, with the use of 

detergents, these proteins should be associated with the outer membrane, viz., peripheral 

outer membrane proteins. In comparison with the structural differences between the 

monomeric ΔC1 and C1S CusC mutants, as well as trimeric wild-type CusC channel, these 

structural data provide molecular detail into the mechanisms of assembly and folding of this 

outer membrane channel (Fig. 3). In the case of the OmpA outer membrane protein [29], in 

vitro studies have demonstrated that the insertion and folding of this protein into the lipid 

bilayer occur spontaneously without the need of accessory proteins, including the β-barrel 

assembly machinery complex [30,31]. In the aqueous phase, OmpA is unstructured and does 

not have any β-signature. It encounters the inner leaflet of the outer membrane from the 
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periplasm to form an intermediate IMI [32]. At this state, the protein is still disordered and 

does not yet appear to have any β-structure. Upon membrane association, two more 

sequential intermediates, including molten disk (IM2) and molten global (IM3), are formed 

prior to the completion of the mature folded β-barrel channel [32]. Some fractions of the β-

structure have been found to develop in the IM2 intermediate state. However, these structures 

appear to localize on the membrane surface, and no correct tertiary β-contact or penetration 

into the membrane has yet been made. In the IM3 molten globule state, the β-hairpin loops 

have partially translocated into the lipid bilayer. This intermediate is more globular, but the 

correct tertiary fold is needed to complete the formation of the native structure. Finally, the 

native structure is achieved through an extensive rearrangement of side-chain contacts and 

formation of backbone hydrogen bonds between strands to form a transmembrane β-channel 

[31], spanning the outer membrane. 

In this respect, the monomeric ΔC1 and C1S structures should correspond to the unstructured 

IM1 intermediate of the β-channel membrane proteins. As we isolated these two mutant 

proteins from the membrane fractions, they should interact with the membrane even though 

they failed to form a fully inserted β-barrel. This may support the idea that the unstructured 

IM1 intermediate of CusC is associated with inner leaflet of the outer membrane. 

Interestingly, the architecture of the α-helical secondary structures of the periplasmic domain 

of this channel has already been achieved at this state. It has been proposed that the 

monomeric LukF structure [33], containing a partial β-strand signature, represents the molten 

disk form of the α-hemolysin heptamer [34]. Thus, the next step for CusC folding may be the 

formation of a monomeric molten disk (mono-IM2) intermediate, where a partial β-strand 

conformation has been established at this state (Fig. 3). Upon oligomerization at the interface 
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of the inner leaflet of the outer membrane, the subsequent step may be the transition to the 

trimeric molten disk (tri-IM2) intermediate, where the β-hairpins of each monomer are still 

localized at the membrane interface and have not yet penetrated into the membrane. Then, 

the next step should well be the formation of a trimeric IM3 molten globule intermediate, in 

which the β-hairpins have been inserted into the membrane and the partial β-barrel has been 

achieved. Finally, the native state of trimeric CusC should be formed and the mature β-barrel 

channel should be completed, allowing the β-structural elements to span the entire outer 

membrane. 

Although the phenomenon of outer membrane protein folding has been studied extensively 

using fluorescence methods, the three-dimensional structures of these unfolded intermediates 

are difficult to obtain by X-ray crystallography and NMR because of their intrinsically 

unstructured and disordered nature. This study provides a snapshot of the conformation of 

these outer membrane channel proteins in their unstructured form. The structures of CusC 

have allowed us to unmask the sequential transition of conformations leading to the folding 

and membrane insertion of this channel. During the course of channel formation, it is 

believed that specific protein–protein and protein–lipid interactions play a critical role in the 

assembly of this trimeric transmembrane β-barrel channel. 

 

Materials And Methods 

Cloning, expression and purification of the CusC, C1S and ΔC1 channel proteins 

Briefly, the full-length CusC membrane protein containing a 6×His tag at the C-terminus was 

overproduced in E. coli C43(DE3)/pBAD22bΩcusC cells. Cells were grown in 12 L of LB 

medium with 100 µg/ml ampicillin at 37 °C. When the OD600 reached 0.5, the culture was 
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cooled down to 20 °C and then treated with 0.2% arabinose to induce cusC expression. Cells 

were harvested after shaking for 16 h at 20 °C. The collected bacteria were resuspended in 

buffer containing 20 mM Na–Hepes (pH 7.5), 300 mM NaCl and 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and were then disrupted with a French pressure cell. 

The membrane fraction was collected by ultracentrifugation, followed by a pre-extraction 

procedure by incubating in buffer containing 0.5% sodium lauroyl sarcosinate, 20 mM Na–

Hepes (pH 7.5) and 50 mM NaCl for 0.5 h at room temperature. The membrane was 

collected and washed twice with buffer containing 20 mM Na–Hepes (pH 7.5) and 50 mM 

NaCl. The membrane protein was then solubilized in 2% (w/v) n-dodecyl-β-D-maltoside 

(DDM). Insoluble material was removed by ultracentrifugation at 100,000g. The extracted 

protein was purified with a Ni2+- affinity column. The purity of the CusC protein (> 95%) 

was judged using 10% SDS-PAGE stained with Coomassie Brilliant Blue. The purified 

protein was then dialyzed and concentrated to 15 mg/ml in buffer containing 20 mM Na-

Hepes (pH 7.5), 200 mM NaCl and 0.05% DDM. 

The C1S CusC protein that contains a 6×His tag at the C-terminus was overproduced in E. 

coli C43(DE3) cells using the pBAD22bΩcusC(C1S) expression vector. The procedures for 

expressing and purifying the C1S mutant channel were identical with those of 6×His CusC. 

The purified C1S protein was concentrated to 15 mg/ml in buffer containing 20 mM Na–

Hepes (pH 7.5), 200 mM NaCl and 0.05% DDM for crystallization. 

The ΔC1 CusC protein containing a 6×His tag at the C-terminus was overproduced in E. coli 

C43(DE3) cells/ pBAD22bΩcusC(ΔC1). The procedures for cell growth and protein 

expression were identical with those of 6×His CusC. For protein purification, the procedures 

were nearly identical with those of the 6×His CusC channel, except that the extracted outer 
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membrane was solubilized in 2% (w/v) 6-cyclohexyl-1-hexyl-β-D-maltoside (Cymal-6). 

Insoluble material was removed by ultracentrifugation at 100,000g. The ΔC1 protein was 

purified with a Ni2+-affinity column. The purity of the ΔC1 protein (>95%) was judged using 

10% SDS-PAGE stained with Coomassie Brilliant Blue. The purified ΔC1 protein was then 

dialyzed and concentrated to 15 mg/ml in buffer containing 20 mM Na–Hepes (pH 7.5), 200 

mM NaCl and 0.05% Cymal-6. 

For 6×His SeMet-ΔC1 (SeMet, selenomethionine), the protein was expressed in E. coli 

BL21Star(DE3) cells possessing pET15bΩcusC(ΔC1). In brief, a 10-ml LB broth overnight 

culture containing E. coli BL21star(DE3)/pET15- bΩcusC(ΔC1) cells was transferred into 

120 ml of LB broth containing 100 µg/ml ampicillin and grown at 37 °C. When the OD600 

value reached 1.2, cells were harvested by centrifugation at 6000 rpm for 10 min and then 

washed two times with 20 ml of M9 minimal salt solution. The cells were resuspended in 120 

ml of M9 media and then transferred into a 12-L pre-warmed M9 solution containing 100 

µg/ml ampicillin. The cell culture was incubated at 37 °C with shaking. When the OD600 

reached 0.4, 100 mg/l of lysine, phenylalanine and threonine; 50 mg/l of isoleucine, leucine 

and valine; and 60 mg/l of L-SeMet were added. The culture was induced with 1 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) after 15 min. Cells were then harvested within 3 

h after induction. The collected bacteria were resuspended in low-salt buffer containing 100 

mM sodium phosphate (pH 7.2), 10% glycerol and 1 mM PMSF and were then disrupted 

with a French pressure cell. The membrane fraction was collected and washed twice with 

high-salt buffer containing 20 mM sodium phosphate (pH 7.2), 2 M KCl, 10% glycerol, 1 

mM ethylenediaminetetraacetic acid and 1 mM PMSF and once with 20 mM Na–Hepes 

buffer (pH 7.5) containing 1 mM PMSF. The membrane protein was then solubilized in 2% 
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(w/v) Cymal-6. Insoluble material was removed by ultracentrifugation at 100,000g. The 

extracted protein was purified with a Ni2+-affinity column. The purity of the SeMet-ΔC1 

protein (>95%) was judged using 10% SDS-PAGE stained with Coomassie Brilliant Blue. 

The purified protein was then dialyzed and concentrated to 20 mg/ml in a buffer containing 

20 mM Na–Hepes (pH 7.5), 200 mM NaCl and 0.05% Cymal-6. 

 

Crystallization of the CusC, ΔC1 and C1S proteins 

Crystals of the 6×His CusC were obtained using sitting-drop vapor diffusion. The CusC 

crystals were grown at room temperature in 24-well plates with the following procedures. A 

2-µl protein solution containing 15 mg/ml CusC protein in 20 mM Na–Hepes (pH 7.5), 200 

mM NaCl and 0.05% (w/v) DDM was mixed with a 2-µl reservoir solution containing 8% 

polyethylene glycol (PEG) 3350, 0.05 M sodium acetate (pH 4.0), 0.2 M (NH4)2SO4, 1% JM 

600 and 2% OG. The resultant mixture was equilibrated against 500 µl of the reservoir 

solution. Crystals of CusC grew to a full size in the drops within 2 weeks. Typically, the 

dimensions of the crystals were 0.2 mm × 0.2 mm × 0.2 mm. Cryoprotection was achieved 

by raising the glycerol concentration stepwise to 30% with a 5% increment in each step. 

Crystals of the 6×His ΔC1 mutant were obtained using sitting-drop vapor diffusion. Briefly, 

a 2-µl protein solution containing 15 mg/ml ΔC1 protein in 20 mM Na–Hepes (pH 7.5), 200 

mM NaCl and 0.05% (w/v) Cymal-6 was mixed with a 2-µl reservoir solution containing 

10% PEG 2000, 0.1 M Na–Hepes (pH 7.5) and 0.1 M KSCN. The resultant mixture was 

equilibrated against 500 µl of the reservoir solution. Crystals of ΔC1 grew to a full size in the 

drops within 3 days with the dimensions 0.2 mm × 0.2 mm × 0.2 mm. Cryoprotection was 

achieved by raising the glycerol concentration stepwise to 30% with a 5% increment in each 
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step. 

The crystallization conditions for SeMet-ΔC1 were the same as those for the native ΔC1 

protein. The procedures for crystallizing the 6×His C1S mutant were nearly identical with 

those of 6×His CusC. The reservoir solution used to crystallize C1S contained 12% PEG 

3350, 0.1 M sodium citrate (pH 6.5), 0.1 M sodium acetate and 15% butane-2,3-diol. 

Crystals of C1S also grew to a full size in the drops within 2 weeks. Cryoprotection was 

achieved by raising the glycerol concentration stepwise to 30% with a 5% increment in each 

step. 

 

Data collection, structural determination and refinement 

All diffraction data were collected at 100 K at beamline 24ID-C located at the Advanced 

Photon Source, using an ADSC Quantum 315 CCD-based detector. Diffraction data were 

processed using DENZO and scaled using SCALE- PACK [35]. Crystals of 6×His CusC 

belong to space group R32 (Table S1). Based on the molecular mass of CusC (49.3 kDa), 

there is a single molecule per asymmetric unit with a solvent content of 67.8%. The structure 

of the CusC channel protein was phased using molecular replacement, utilizing the published 

CusC structure (PDB code: 3PIK) as the search model. Structural refinement was then 

performed using PHENIX [36] and CNS [37] by refining the model against our 2.09-Å-

resolution diffraction data (Table 1). 

Crystals of 6×His ΔC1 took a space group P21 (Table 1). In the asymmetric unit, two 

molecules of ΔC1 were found with a solvent content of 47.1%. Single anomalous dispersion 

phasing using the program Phaser [38] was employed to obtain experimental phases. Phases 

were then subjected to density modification and phase extension to 2.53 Å resolution using 
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the program RESOLVE [39]. The ΔC1 CusC protein contains six methionine residues, and 

five selenium sites per ΔC1 molecule (10 selenium sites per asymmetric unit) were 

identified. The SeMet data not only augmented the experimental phases but also helped in 

tracing the molecules by anomalous difference Fourier maps where we could ascertain the 

proper registry of SeMet residues. After tracing the initial model manually using the program 

Coot [40], we refined the model against the native data at 2.53 Å resolution using PHENIX 

[36] and CNS [37]. The conformations of the two ΔC1 molecules in the asymmetric unit are 

very similar. Superimposition of these two molecules gives an overall RMSD of 1.0 Å (for 

372 Cα atoms). Crystals of 6×His C1S CusC belong to space group P21 (Table 1). Two 

molecules per asymmetric unit were found in the crystal with a solvent content of 47.3%. 

The structure of the C1S protein was phased using molecular replacement, utilizing the ΔC1 

structure as the search model. The model was then refined against the C1S data at 2.69 Å 

resolution using the same procedures for the full-length CusC and ΔC1 structures. The 

structures of the two C1S molecules in the asymmetric unit are nearly identical with each 

other. Superimposition of these two molecules gives an overall RMSD of 0.9 Å (for 350 Cα 

atoms). 

 

Gel filtration 

A protein liquid chromatography Superdex 200 16/60 column (Amersham Pharmacia 

Biotech) with a mobile phase containing 20 mM Na–Hepes (pH 7.5), 200 mM NaCl and 

0.05% DDM was used in the gel-filtration experiments. Blue dextran (Sigma-Aldrich) was 

used to determine the column void volume, and proteins for use as gel-filtration molecular 

weight standards were cytochrome C (Mr, 12,400), carbonic anhydrase (Mr, 29,000), 
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albumin bovine serum (Mr, 66,000), alcohol dehydrogenase (Mr, 150,000) and β-amylase 

(Mr, 200,000). All these standards were purchased from Sigma-Aldrich. The molecular 

weights of the experimental samples were determined following the protocols supplied by the 

manufacturers. 

 

Data deposition 

Atomic coordinates and structure factors have been deposited in the Protein Data Bank under 

codes 4K7R (wild-type CusC), 4K7K (ΔC1) and 4K34 (C1S). 

Supplementary data to this article can be found online at 

http://dx.doi.org/10.1016/j.jmb.2013.09.042. 
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found to flip down to the outermost surface of the
periplasmic α-helical tunnel. In addition, the top
portion of the vertical periplasmic α-helices, H7 and
H8, make substantial changes and are found to bend
downward to accommodate for the change in
conformation. Residues N276 of H7 and N334 of
H8 appear to form hinges for the bending.
Interestingly, the drastic changes in conformation

described above are accompanied by the structural
changes of residues 84–116, which form the trans-
membrane β-strands S1 andS2 of thewild-typeCusC
channel. In the ∆C1 mutant, the electron density map
in the region between residues 82 and 111 is very
unclear, suggesting that the majority of the secondary
structure of this area is disordered. Thus, this region,
located at the innermost surface of the periplasmic
α-helical tunnel, also creates a large random loop in
the ∆C1 mutant. Similar to the case of helices H7 and
H8, the top portion of the vertical periplasmic
α-helices, H3 and H4, also bend downward and the
hinges are found in nearby residues N76 and T137.
Excluding these areas, the remaining tertiary fold

of the ∆C1 CusC monomer is very similar to that of a
promoter of the wild-type CusC. However, ∆C1
crystallized as a monomer with two molecules in

the asymmetric unit (Figs. S3 and S4). The structure
suggests that the ∆C1 mutant is monomeric. This
monomeric ∆C1 CusC mutant is mostly α-helical,
forming an ~95-Å-long secondary structure.

Crystal structure of the C1S CusC mutant

The crystal structure of the C1S mutant was
determined to a resolution of 2.69 Å (Figs. 1d and
S5). Overall, the structural model of the C1S mutant
is nearly identical with that of the ∆C1 CusC channel.
Like ∆C1, gel filtration suggests that the C1S mutant
is also monomeric in nature (Fig. S6). Superimposi-
tion of these two structures gives an overall RMSD of
0.37 Å (for 381 Cα atoms). Again, the monomer's
four-stranded antiparallel β-sheet, which packs
against one another to form the 12-stranded
transmembrane β-barrel of the wild-type trimeric
CusC channel, does not seem to exist in this mutant
structure. Similar to the ∆C1 mutant, the residues
that are supposed to form the four-stranded β-sheet
contribute to two independent random loops. One of
these loops is found at the position that is supposed
to form the upper portion of the innermost core of the
periplasmic α-helical tunnel. Another loop is located

Table 1. Data collection, phasing and structural refinement statistics of the CusC, ΔC1 and C1S proteins.

CusC (WT) ΔC1 ΔC1 (SeMet) C1S

Data collection
Space group R32 P21 P21 P21
Cell dimensions
a, b, c (Å) 88.49, 88.49, 474.72.60 62.02, 104.47, 72.03 61.93, 104.41, 71.95 61.88, 105.03, 72.36
α, β, γ (°) 90, 90, 120 90, 101.03, 90 90, 101.03, 90 90, 101.06, 90
Wavelength (Å) 0.979 0.979 0.979 0.979
Resolution (Å) 50–2.09 (2.17–2.09) 50–2.53 (2.63–2.53) 50–2.8 (2.90–2.80) 50–2.69 (2.84–2.69)
Rsym (%) 8.3 (40.4) 6.9 (41.7) 11.6 (45.9) 10.2 (30.4)
Average I/σI 12.7 (1.8) 12.1 (1.7) 10.5 (2.16) 9.3 (3.4)
Completeness (%) 97.3 (97.2) 94.0 (91.6) 99.9 (99.8) 98.5 (95.0)
Redundancy 2.4 (2.4) 2.1 (2.0) 2.8 (2.8) 3.8 (3.7)
Total reflections 640,300 426,465 654,832 94,904
Unique reflections 43,397 30,236 22,466 24,874

Phasing
Number of sites 10
Figure of merit (acentric/centric) 0.821/0.797

Refinement
Resolution (Å) 50–2.09 50–2.53 50–2.69
Number of reflections 54,129 31,197 24,838
Rwork/Rfree (%) 20.60/23.50 20.77/26.71 19.08/24.61
B-factors (Å2)
Protein chain A 30.6 43.7 46.3
Protein chain B 50.7 51.8
RMSD
Bond lengths (Å) 0.007 0.008 0.009
Bond angles (°) 0.924 1.105 1.143

Ramachandran
Most favored 96.4 93.4 92.8
Additional allowed 3.6 6.6 6.2
Generously allowed 0 0 0.7
Disallowed 0 0 0.3
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at the outermost core of the upper portion of this
periplasmic tunnel.
The structural difference between wild-type CusC

and ∆C1 or C1S suggests that the α-helical tunnels
of the wild type and these mutant channels are in
different conformational states. Superimposition of
the periplasmic α-helical domains of wild-type CusC
and ∆C1 indicates that the conformations of helices
H8 and H9 on these two structures are significantly
different. It is found that helices H8 and H9 shift their
positions in the ∆C1 mutant in comparison to those
of the wild type. When each protomer of the wild-type
CusC trimer is superimposed with the ∆C1 mutant,
the change in conformation between the wild-type
and ∆C1 proteins can be interpreted as an outward
swing of H8 and H9 at the periplasmic tip of the
α-helical tunnel from the structure of the wild-type
CusC trimer to adopt the conformational state of ∆C1
(Fig. 2). This conformational shift results in the
opening of the channel of the periplasmic tunnel. As
the structure of the wild-type CusC trimer represents
a closed form of the channel [20], the conformation of
the α-helical tunnel of the ∆C1 and C1Smutants may
correspond to the open state of the channel. If this is
the case, then the interaction between the β-barrel

residues and outer membrane may be critical for
controlling the opening and closing of the CusC
channel.

Discussion

In our protein expression system, a CusC signaling
peptide was included at the N-terminus of each target
protein. Thus, each protein, including the wild-type
CusCandmutants∆C1andC1S, should secrete to the
periplasm. To ensure that the harvestedCusCproteins
were attached to or anchored to the E. coli outer
membrane, and not the inner membrane, we per-
formed a pre-extraction procedure using 0.5% sodium
lauroyl sarcosinate [28] to selectively dissolve and
remove proteins of the inner membrane (seeMaterials
and Methods). The undissolved outer membrane
constituents, containing the corresponding CusC
outer membrane proteins, were then collected by
ultracentrifugation before protein extraction. As all of
our CusC proteins were extracted from the outer
membrane pellets, with the use of detergents, these
proteins should be associated with the outer mem-
brane, viz., peripheral outer membrane proteins.
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Fig. 1. Structures of the CusC channel proteins. (a) Side view of the trimeric CusC channel. One of the protomers of
CusC is in rainbow colors. The other two molecules of CusC are colored gray. (b) Ribbon diagram of the structure of a
CusC protomer. The CusC protomer is acylated (red sticks) through the Cys1 residue to anchor onto the outer membrane.
(c) Ribbon diagram of the structure of a protomer of the ∆C1 mutant. (d) Ribbon diagram of the structure of a protomer of
the C1S mutant. The molecules are colored using a rainbow gradient from the N-terminus (blue) to the C-terminus (red).
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Fig. 1. Structures of the CusC channel proteins. (a) Side view of the trimeric CusC channel. 

One of the protomers of CusC is in rainbow colors. The other two molecules of CusC are 

colored gray. (b) Ribbon diagram of the structure of a CusC protomer. The CusC protomer is 

acylated (red sticks) through the Cys1 residue to anchor onto the outer membrane. (c) Ribbon 

diagram of the structure of a protomer of the ΔC1 mutant. (d) Ribbon diagram of the 

structure of a protomer of the C1S mutant. The molecules are colored using a rainbow 

gradient from the N-terminus (blue) to the C-terminus (red).   
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(a) (b) (c) (d) (e)

Fig. 3. Model of folding and membrane insertion of the CusC channel protein. This includes the (a) unstructured IM1
intermediate, (b) monomeric molten disk (mono-IM2) intermediate, (c) trimeric molten disk (tri-IM2) intermediate, (d) trimeric
IM3 molten globule intermediate and (e) mature trimeric CusC protein.

(a) (b)

Fig. 2. Comparison of the conformations of wild-type CusC and ∆C1. (a) Superimposition of a monomer of wild-type
CusC onto that of the ∆C1 mutant. The structures of the wild-type CusC and ∆C1 protomers are colored yellow and blue,
respectively. The arrows indicate the drastic changes in positions and secondary structures when comparing the
conformations of the wild-type and ∆C1 CusC. (b) Superimposition of each protomer of the wild-type CusC trimer with the
∆C1 mutant. Each arrow indicates the shift in the positions of H8 and H9 in each protomer when comparing the wild-type
and ∆C1 structures.
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Fig. 2. Comparison of the conformations of wild-type CusC and ΔC1. (a) Superimposition of 

a monomer of wild-type CusC onto that of the ΔC1 mutant. The structures of the wild-type 

CusC and ΔC1 protomers are colored yellow and blue, respectively. The arrows indicate the 

drastic changes in positions and secondary structures when comparing the conformations of 

the wild-type and ΔC1 CusC. (b) Superimposition of each protomer of the wild-type CusC 

trimer with the ΔC1 mutant. Each arrow indicates the shift in the positions of H8 and H9 in 

each protomer when comparing the wild-type and ΔC1 structures.   
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(a) (b) (c) (d) (e)

Fig. 3. Model of folding and membrane insertion of the CusC channel protein. This includes the (a) unstructured IM1
intermediate, (b) monomeric molten disk (mono-IM2) intermediate, (c) trimeric molten disk (tri-IM2) intermediate, (d) trimeric
IM3 molten globule intermediate and (e) mature trimeric CusC protein.

(a) (b)

Fig. 2. Comparison of the conformations of wild-type CusC and ∆C1. (a) Superimposition of a monomer of wild-type
CusC onto that of the ∆C1 mutant. The structures of the wild-type CusC and ∆C1 protomers are colored yellow and blue,
respectively. The arrows indicate the drastic changes in positions and secondary structures when comparing the
conformations of the wild-type and ∆C1 CusC. (b) Superimposition of each protomer of the wild-type CusC trimer with the
∆C1 mutant. Each arrow indicates the shift in the positions of H8 and H9 in each protomer when comparing the wild-type
and ∆C1 structures.
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Fig. 3. Model of folding and membrane insertion of the CusC channel protein. This includes 

the (a) unstructured IM1 intermediate, (b) monomeric molten disk (mono-IM2) intermediate, 

(c) trimeric molten disk (tri-IM2) intermediate, (d) trimeric IM3 molten globule intermediate 

and (e) mature trimeric CusC protein. 
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Fig. S1. 

Stereo view of the electron density map of the full-length CusC channel at a resolution of 

2.09 Å. This is a 2Fo − Fc electron density map (white mesh) contoured at 1.2 σ. The Cα 

traces of CusC are colored red. 
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Fig. S2. 

Secondary structural topology of the CusC monomer. The topology was constructed based on 

the crystal structure of CusC. The α-helices and β-strands are colored blue and red, 

respectively. 
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Fig. S3. 

Stereo view of the experimental electron density map of the ∆C1 mutant at a resolution of 

2.53 Å. Anomalous maps of the 10 selenium sites (contoured at 3 σ), corresponding to the 

five methionines from each protomer, are colored green. The electron density (colored white) 

is contoured at the 1.2 σ level and superimposed with the Cα traces of the two ∆C1 

protomers (red and blue) in the asymmetric unit. 
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Fig. S4. 

Crystal packing of ∆C1. Packing diagram of ∆C1viewed along the (a) a-axis. (b) Packing 

diagram of ∆C1viewed orthogonal to (a). The ∆C1 molecules are colored red and green. 
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Fig. S5. 

Stereo view of the electron density map of the C1S CusC mutant at a resolution of 2.69 Å. 

The electron density (colored white) is contoured at the 1.2 σ level and superimposed with 

the Cα traces of two C1S protomers (blue and green) in the asymmetric unit. 
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Fig. S6. 

Representative gel-filtration experiment. The experiment demonstrated that the C1S mutant 

is monomeric. The y-axis values were defined as follows: Kav = (Ve − V0)/(VT − V0), 

where VT, Ve and V0 are the total column volume, elution volume and void volume of the 

column, respectively. Standards used were as follows: A, cytochrome C (Mr, 12,400); B, 

carbonic anhydrase (Mr, 29,000); C, albumin bovine serum (Mr, 66,000); D, alcohol 

dehydrogenase (Mr, 150,000); and E, β-amylase (Mr, 200,000). The void volume was 

measured using blue dextran (Mr, 2,000,000). The experiment suggested an average 

molecular mass of 48.1 ± 4.0 kDa for the C1S mutant. This value is in good agreement with 

the theoretical value of 48.4 kDa for one C1S molecule, indicating that the C1S mutant is 

monomeric in form. 
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CHAPTER 4. CRYSTAL STRUCTURE OF THE OPEN STATE OF THE NEISSERIA 

GONORRHOEAE MTRE OUTER MEMBRANE CHANNEL 
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Abstract 

Active efflux of antimicrobial agents is one of the most important strategies used by 

bacteria to defend against antimicrobial factors present in their environment.  Mediating 

many cases of antibiotics resistance are transmembrane efflux pumps, composed of one or 

more proteins.  The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, 

belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division 

(HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and 

confers resistance to a variety of antibiotics and toxic compounds.  We here describe the 

crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE 

tripartite multidrug efflux system.  This trimeric MtrE channel forms a vertical tunnel 

extending down contiguously from the outer membrane surface to the periplasmic end, 

indicating that our structure of MtrE depicts an open conformational state of this channel.  
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Introduction 

Neisseria gonorrhoeae is a Gram-negative diplococcus, which is found only in 

humans and causes the sexually transmitted disease gonorrhea.  Gonorrhea is one of the 

oldest described diseases, however, it remains a significant global problem with more than 

100 million cases reported annually worldwide and antibiotic resistance is a major concern 

[1].  Since N. gonorrhoeae is a strictly human pathogen and can colonize both male and 

female genital mucosal surfaces and other sites, it has developed mechanisms to overcome 

antimicrobial systems of the host’s innate defense.  One major mechanism that this bacterium 

uses to repel antimicrobial agents is the expression of multidrug efflux pumps that recognize 

and actively export a variety of structurally unrelated toxic compounds from the bacterial 

cell, including antibacterial peptides, long-chain fatty acids, and several clinically important 

antibiotics [2-5].  

The best characterized and most clinically important efflux system in N. gonorrhoeae 

is the MtrCDE tripartite multidrug efflux system [6-8], which belongs to the hydrophobic and 

amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family.  In Gram-

negative bacteria, efflux systems of the HAE-RND family play major roles in the intrinsic 

and acquired tolerance of antibiotics and toxic compounds [9].  They represent key 

components for Gram-negative pathogens to use in overcoming toxic environments 

unfavorable for their survival.  Typically, an RND efflux pump [10-16] works in conjunction 

with a periplasmic membrane fusion protein [17-20], and an outer membrane channel to form 

a functional protein complex [21,22].  The resulting tripartite efflux system spans the inner 

and outer membranes of Gram-negative bacterium to export substrates directly out of the cell 

[9]. 
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For the MtrCDE tripartite efflux system, MtrD [7,23] is a large proton-motive-force 

dependent inner membrane HAE-RND efflux pump composed of 1,067 amino acids.  MtrE 

[24,25] is a 447 amino acid protein that forms an outer membrane channel.  The membrane 

fusion protein MtrC [25,26], containing 412 amino acids, bridges between MtrD and MtrE to 

form the tripartite efflux complex MtrCDE.  This powerful efflux complex spans the entire 

cell envelope of N. gonorrhoeae and mediates the export of hydrophobic antimicrobial 

agents, such as antibiotics, nonionic detergents, antibacterial peptides, bile salts and gonadal 

steroidal hormones [2,7,27,28].   

Currently, there are only two crystal structures of HAE-RND efflux pumps resolved 

by crystallography.  These efflux pumps are the Escherichia coli AcrB [10-15] and 

Pseudomonas aeruginosa MexB [16] multidrug transporters.  The crystal structures of the 

other components of these tripartite complex systems have also been determined.  These 

include the outer membrane channels, E. coli TolC [21] and P. aeruginosa OprM [22] as well 

as the periplasmic membrane fusion proteins, E. coli AcrA [19] and P. aeruginosa MexA 

[20-22].  In Gram-negative bacteria, several other crystal structures of outer membrane 

channels, such as VceC of Vibro choleria [29] and CusC of E. coli [30,31] have also been 

reported.  

Thus far, there is no structural information available for any protein component of the 

MtrCDE tripartite complex system.  However, it has been reported that individual protein 

components of this tripartite system are able to interact between each other, suggesting that 

the tripartite MtrCDE pump is assembled in the form of MtrD3-MtrC6-MtrE3 [25].  It is 

important to note that this result is indeed in good agreement with the CusAB transporter-
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adaptor co-crystal complex [32,33] of the CusABC efflux system [30,31,34-37] where the 

stoichiometry is 3:6 transporter-to-adaptor molar ratio [32,33]. 

Here we present the crystal structure of the outer membrane MtrE channel, which 

represents an open conformational state of this multidrug efflux protein.  The structure 

suggests that the interior surface of the channel protein forms a continuous, elongated tunnel, 

which extends from the outer membrane surface and leads down to the tip of the α-helical 

periplasmic domain.  In addition, an aspartate ring created by six aspartates is found at the tip 

of the periplasmic tunnel, presumably participating as a selectivity gate of the channel.     

 

Results And Discussion 

Overall structure of the N. gonorrhoeae MtrE outer membrane channel 

We cloned, expressed, and purified the full-length MtrE outer membrane channel containing 

a 6xHis tag at the C-terminus.  We obtained crystals of this membrane protein using vapor 

diffusion.  We then used molecular replacement, utilizing the structure of P. aeruginsa OprM 

(pdb code: 1WP1) [22] to determine the three-dimensional structure of MtrE.  The diffraction 

data were indexed to the space group P6322.  Data collection and refinement statistics are 

summarized in Table 1.  The resulting electron density maps (Fig. 1) reveal that the 

asymmetric unit consists of one protomer.  The crystal structure of the full-length MtrE outer 

membrane channel protein was then determined to a resolution of 3.29 Å (Table 1).  The 

final model comprises 99% of the total amino acids (residues 1-445) (Fig. 2a).  The final 

structure is refined to Rwork and Rfree of 24.1% and 29.4%, respectively.  Superimposition of 

the final structure of MtrE with that of OprM (pdb code: 1WP1) [22] results in a RMSD of 

18.2 Å over 445 Cα atoms, suggesting highly significant difference in the overall tertiary 
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structures between these two channel proteins (Fig. S1).  

Like TolC [21] and OprM [22], MtrE exists as a homotrimer that forms a ~130 Å long α/β 

barrel (Fig. 2b).  Each subunit of MtrE contains four β-strands (contributing to the 12-

stranded outer membrane β-barrel) and eight α-helices (forming the elongated periplasmic α-

barrel) (Fig. 3).  These four β-strands (S1, S2, S3 and S4) constitute the β-barrel domain and 

are organized in an antiparallel fashion, spanning the outer membrane.  In contrast, the 

elongated periplasmic tunnel of MtrE contains six α-helices.  Similar to the structure of 

TolC, two long helices (H3 and H7) are found to extend across the entire length of the 

periplasmic α-helical tunnel.  The α-helical tunnel of MtrE also includes two pairs of shorter 

α-helices, (H2 and H4) and (H6 and H8).  These two pairs of shorter helices stack end-to-end 

to form pseudocontinuous helices, which contribute coiled-coil interactions with the two long 

helices.  The equatorial domain of MtrE is composed of two helices (H1, H5) and the 

remaining elements at this domain are mostly unstructured.  The periplasmic tunnel of MtrE 

is ~100 Å long with an outermost diameter of ~35 Å at the tip of the tunnel.   

 

The crystal structure of MtrE shows that the internal surface of the protein forms a 

continuous channel 

In view of the crystal structure of MtrE, it is found that the internal surface of the protein 

forms a continuous channel.  This channel is completely open and fully accessible through 

both the periplasmic end and outer membrane surface, suggesting that the MtrE channel is at 

its open conformational state.  To date, most of the available structures of outer membrane 

channels, including TolC [21], OprM [22] and CusC [30,31] are closed at one or both sides.  

However, several structures of the TolC mutants, which led to the opening of the TolC exit 
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dust, have been reported [38,39].  These structures also indicate how important residues 

interact with one another to control the opening and closing of the periplasmic end of this 

channel.  Nonetheless, our crystal structure of the wild-type MtrE channel indicates that this 

channel is in its open conformational state (Fig. 4).  The widest section of the channel is 

located at the surface of the outer membrane, with the internal diameter of ~22 Å.  The 

volume of the continuous channel formed by the internal surface of the MtrE trimer is 

~45,000 Å3.  

In addition, all available structures of outer membrane channel proteins, such as TolC [21], 

OprM [22] and CusC [30,31] indicate that the interior surfaces of these channels are highly 

electronegative.  However, MtrE is distinct in that its internal surface does not have extensive 

positively or negatively charge patches (Fig. 5).  On the contrary, the charge distribution of 

the outside surface of MtrE is very similar to other outer membrane channels, in which the 

outside surfaces of all these channels have no extensive charged patches.  

 

The interior aspartate ring 

Like the TolC channel, an aspartate ring is found at the periplasmic entrance of the interior of 

the MtrE channel.  Each protomer of MtrE contributes D402 and D405 to form two 

concentric circles of negative charges in the inner cavity of the trimeric MtrE channel (Fig. 

6).  Thus, this interior aspartate ring is composed of six aspartate residues.  In TolC, the 

corresponding aspartate ring creates a selectivity gate for this channel and this ring can be 

blocked by large cations.  Fig. S2 illustrates the alignment of protein sequences of the MtrE 

and TolC channels.  The internal diameter of the MtrE aspartate ring is ~12 Å, which creates 

the narrowest region of the tunnel.  It is likely that this aspartate ring is responsible for the 
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selectivity of the channel, similar to the case of TolC [40].  Indeed, it has been demonstrated 

that the aspartate ring of MtrE can be blocked by the large positively charged 

hexamminecobalt (III) complex [25]. 

In comparison with the TolC structures, it appears that the apparent dilation of our MtrE 

structure is higher than any reported structures of the open state of TolC.  For example, the 

longest distances between D374 residues of the three TolC protomers in the TolCWT, TolCRS 

and TolCYFRS structures, measured between the side chain O(δ2) atoms, are 6.2, 6.2 and 9.9 

Å [39].  The longest distances between the Cα atoms of D374 residues within these TolC 

trimers are 11.7, 12.3 and 15.4 Å [39].  In the MtrE trimer, the corresponding distance 

between the side chain O(δ2) atoms of D405 residues becomes 11.8 Å.  Additionally, the 

distance between the Cα atoms of these aspartates is 16.0 Å.  It is suspected that the open 

conformational state of MtrE reflects the low-pH form of this channel, as we crystallized this 

channel at low pH which would neutralize the aspartate ring. 

During the course of substrate import or export, the aspartate ring may need to dilate and 

increase its internal diameter to allow substrate to pass through the channel.  Although our 

structure indicates that MtrE is capable of opening this channel by itself, it has been 

suggested that the dilation and constriction of the aspartate ring may be controlled by the 

MtrC periplasmic membrane fusion protein [24].  In addition, it has been observed that the 

MtrE channel is able to allow the large vancomycin molecule to enter the cell [24].  

However, it only does so in response to the binding of MtrC [24], presumably enhancing the 

degree of dilation of the MtrE channel.  It appears that the opening and closing of the MtrE 

channel may be induced by the change in conformation of the MtrC membrane fusion 

protein, which propagates the progressive motion of the MtrD multidrug efflux pump within 
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the transport cycle to the MtrE channel.  As MtrD is a proton motive force-dependent pump, 

this may imply that active proton translocation within the MtrD inner membrane efflux pump 

provides the energy to open and close the MtrE outer membrane channel.       

 

The exterior intra- and inter-protomer grooves 

The outermost surface of the periplasmic domain of the MtrE trimer forms three intra-

protomer and three inter-protomer grooves.  These grooves are likely to provide interaction 

sites for the MtrC membrane fusion protein.  There is a chance that the α-helical coiled-coil 

domain of MtrC could fit into these grooves and contact MtrE to function.  Based on the co-

crystal structure of the CusAB transporter-adaptor complex [32,33], the β-barrel domains of 

the elongated MtrC membrane fusion protein should interact with the periplasmic domain of 

the MtrD pump, bridging the gap between the MtrD and MtrE membrane proteins.  This 

suggests that MtrC could relay conformational changes from the MtrD pump to MtrE 

channel, allowing these two efflux proteins to communicate between each other.  In turn, this 

relay network may control the opening and closing of MtrE.    

Several surface-exposed residues, including E161, R168, E407, E414 and Q421, are found at 

the intra-protomer groove of MtrE.  Interestingly, many of these residues are charged amino 

acids.  Likewise, a number of charged and polar residues, such as Q167, N178, E198, E202, 

R215 and R219, also line the surface of the inter-protomer groove of MtrE.  These charged 

and polar residues may be critical for MtrE-MtrC interaction.  Indeed, it has been identified 

that residues E414 and Q421 (found in the intra-protomer groove) as well as N178 (located at 

the inter-protomer groove) are important for the function of the MtrCDE tripartite efflux 

pump [24].  
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The α-helical hairpin of the MtrC membrane fusion protein may directly engage to contact 

the inter- and intra-protomer grooves of the MtrE channel to form a complex.  Thus, these 

surface-exposed charged and polar residues, found within the inter- and intra-protomer 

grooves of MtrE, may be crucial for the binding of MtrC to the MtrE channel.  Exactly how 

MtrC and MtrE interact must await confirmation by elucidation of the crystal structure of the 

MtrC membrane fusion protein.       

It is well established that overexpression of RND multidrug efflux pumps leads to a resistant 

phenotype in pathogenic organisms.  Because of the fact that these multidrug efflux pumps 

are able to respond to a wide spectrum of substrates, pathogenic bacteria that overexpress 

them can be selected for by many different agents.  Thus, it is very important to understand 

the molecular mechanism as well as detailed structural information of these efflux pumps in 

order to combat infectious diseases.  The control of gonorrhea has been compromised by the 

increasing proportion of infections due to antibiotic-resistant strains, which are growing at 

alarming rate.  The availability of the crystal structure of the MtrE efflux channel may allow 

us to rationally design agents that block its function and eventually heighten the sensitivity of 

N. gonorrhoeae to antimicrobials.   

 

Materials And Methods 

Cloning, expression and purification of the outer membrane MtrE channel   

Briefly, the full-length MtrE membrane protein containing a 6xHis tag at the C-terminus was 

overproduced in E. coli C43(DE3) cells possessing the expression vector pBAD22bΩmtrE.  

Cells were grown in 12 L of LB medium with 100 µg/ml ampicillin at 37oC.  When the 

OD600 reached 0.5, the culture was cooled down to 25oC and then treated with 0.2% (w/v) 
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arabinose to induce mtrE expression.  Cells were harvested after shaking for 16 h at 25oC.  

The collected bacteria were resuspended in buffer containing 20 mM Na-HEPES (pH 7.5), 

300 mM NaCl and 1 mM PMSF, and then disrupted with a French pressure cell.  The 

membrane fraction was collected by ultracentrifugation, followed by a pre-extraction 

procedure by incubating in buffer containing 0.5% (w/v) sodium lauroyl sarcosinate, 20 mM 

Na-HEPES (pH 7.5) and 50 mM NaCl for 0.5 h at room temperature.  The outer membrane 

was collected and washed twice with buffer containing 20 mM Na-HEPES (pH 7.5) and 50 

mM NaCl.  The MtrE membrane protein was then solubilized in 2% (w/v) n-dodecyl β-D-

maltoside (DDM).  Insoluble material was removed by ultracentrifugation at 100,000 x g.  

The extracted protein was purified with a Ni2+-affinity column.  The purity of the MtrE 

protein (>95%) was judged using 12% SDS-PAGE stained with Coomassie Brilliant Blue.  

The purified protein was then dialyzed and concentrated to 15 mg/ml in buffer containing 20 

mM Na-HEPES (pH 7.5), 200 mM NaCl and 0.05% (w/v) DDM. 

 

Crystallization of MtrE  

Crystals of the 6xHis MtrE were obtained using sitting-drop vapor diffusion.  A 2 µl protein 

solution containing 15 mg/ml MtrE protein in 20 mM Na-HEPES (pH 7.5), 200 mM NaCl 

and 0.05% (w/v) DDM was mixed with a 2 µl of reservoir solution containing 20% PEG 400, 

0.2 M sodium acetate (pH 4.6), 0.25 M MgSO4 and 2% (w/v) n-octyl-β-D-glucoside (OG).  

The resultant mixture was equilibrated against 500 µl of the reservoir solution at room 

temperature.  Crystals of MtrE grew to a full size in the drops within two weeks.  Typically, 

the dimensions of the crystals were 0.2 mm x 0.2 mm x 0.2 mm.  Crystals were flash-cooled, 

using solution containing 30% PEG 400, 0.2 M sodium acetate (pH 4.6), 0.25 M MgSO4, 
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0.05% DDM and 2% OG, as a cryoprotectant before data collection.  

 

Data collection, structural determination and refinement  

All diffraction data were collected at 100K at beamline 24ID-C located at the Advanced 

Photon Source, using an ADSC Quantum 315 CCD-based detector.  Diffraction data were 

processed using DENZO and scaled using SCALEPACK [41]. 

Crystals of the MtrE channel protein belong to the space group P6322 (Table 1) and the best 

crystal diffracted x-ray to a resolution of 3.29 Å.  Analysis of Matthew’s coefficient indicated 

the presence of one MtrE protomer (49.29 kDa) per asymmetric unit, with a solvent content 

of 75.8%.   

The structure of MtrE was phased using molecular replacement, utilizing the structure of 

OprM (pdb id: 1WP1) [22] as a search model.  After tracing the initial model manually using 

the program Coot [42] the model was refined against the data at 3.29 Å-resolution using TLS 

refinement techniques adopting a single TLS body as implemented in PHENIX [43] leaving 

5% of reflections in Free-R set.  Iterations of refinement using PHENIX [43] and CNS [44] 

and model building in Coot [42] lead to the current model, which contains 455 amino acids 

with excellent geometrical characteristics (Table 1). 

 

Accession code 

Atomic coordinates and structure factors have been deposited with the Protein Data Bank 

under the accession code 4MT0.  
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Figures And Captions 

 

 

 

Table 1.  Data collection and refinement statistics.  

Data set 
 

MtrE 
  Data Collection         

Wavelength (Å) 
 

0.98 
  Space group 

 
P6322 

  Resolution (Å) 
 

50 – 3.29 
  

  
(3.41-3.29) 

  Cell constants (Å) 
         a 
 

93.89 
       b 

 
93.89 

       c 
 

391.54 
       !, ", # (°) 

 
90, 90, 120 

  Molecules in ASU 
 

1 
  Redundancy 

 
3.4 (3.3) 

  Total reflections 
 

287,882 
  Unique reflections 

 
16,706 

  Completeness (%) 
 

98.7 (95.6) 
  Rsym (%) 

 
11.8 (43.5) 

  Rpim (%)  7.6 (30.2)   
Average I / !(I) 

 
9.7 (2.4) 

  Refinement 
 

            
Resolution (Å) 

 
50 – 3.29 

  Rwork 
 

24.1 
  Rfree  

 
29.4 

  rms deviation from ideal 
            bond lengths (Å) 
 

0.009 
          bond angles (°) 

 
1.249 

  Ramachandran         
most favoured (%) 

 
96.8 

  additional allowed (%) 
 

3.2 
  generously allowed (%) 

 
0.0 

  disallowed (%) 
 

0.0 
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Fig. 1.  Stereo view of the composite omit electron density map of the MtrE channel protein 

at a resolution of 3.29 Å.  (a) The composite omit map contoured at 1.2 σ is in blue.  The Cα 

traces of MtrE are in red.  (b) Representative section of the electron density at the interface 

between H2 and H3 of the periplasmic domain of MtrE.  The electron density (colored white) 

is contoured at the 1.2 σ level and superimposed with the final refined model (green, carbon; 

red, oxygen; blue, nitrogen). 

(a) 

(b) 



www.manaraa.com

 95 

Outer  
membrane 

Equatorial 
domain 

 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Structure of the N. gonorrhoeae MtrE channel protein.  (a) Ribbon diagram of a 

protomer of MtrE viewed in the membrane plane.  The molecule is colored using a rainbow 

gradient from the N-terminus (blue) to the C-terminus (red).  (b) Ribbon diagram of the MtrE 

trimer viewed in the membrane plane.  Each subunit of MtrE is labeled with a different color. 
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Fig. 3.  Secondary structural topology of the MtrE monomer.  The topology was constructed 

based on the crystal structure of MtrE.  The α-helices and β-strands are colored cyan and 

orange, respectively. 
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Fig. 4.  Surface representations of the trimeric MtrE channel.  The views from both the (a) 

extracellular and (b) periplasmic sides suggest that the MtrE channel is in its open form. 
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Fig. 5.  Electrostatic surface potentials of MtrE, TolC and OprM.  Surface representations of 

the inside of the (a) MtrE, (b) TolC (pdb id: 1EK9) [21] and (c) OprM (pdb id: 1WP1) [22] 

channels colored by charge (red; negative -15 kT/e, blue; positive +15 kT/e).  
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Fig. 6.  The periplasmic aspartate ring.  Viewed from the periplasmic side, this aspartate ring 

(formed by D402 and D405 of each protomer) is found at the periplasmic entrance of the 

interior of the MtrE channel.  It is likely that this ring is responsible for the selectivity of 

channel.   
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Fig. S1.  Comparison of the structures of the MtrE and OprM channels.  This is a 

superimposition of a subunit of MtrE (red) onto that of OprM (blue), indicating that the 

structures of these two efflux pumps are quite distinct.   
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Fig. S2.  Alignment of the amino acid sequences of the MtrE and TolC channels.  The 

alignment was done using CLUSTAL W.  *, identical residues; :, >60% homologous 

residues.  Sequence alignment indicates that these two outer membrane channels share 16.7% 

identity.   

 
  

 
MtrE     1 CTMIPQYEQPKVEVAETFQNDTSVSSIRAVDLGWHDYFADPRLQKLIDIALERNTSLRTA 60 
TolC     1 ENLMQVYQQARLSNPE--LRKSAADR---------------------DAAFEKINEARSP 37               
            .::  *:*.::. .*   ..::..                      * *:*: .. *:.  
 
 
MtrE    61 VLNSEIYRKQYMIERNNLLPTLAANANGSRQGSLSGGNVSSSYNVGLGAASYELDLFGRV 120 
TolC    38 LLPQLGLGADYTYS------------NGYRDANGINSNATSAS-LQLTQSIFDMSKWRAL 84              
           :* .     :*  .            ** *:..  ..*.:*:  : *  : :::. :  :  
 
 
 
MtrE   121 RSSSEAALQGYFASVANRDAAHLSLIATVAKAYFNERYAEEAMSLAQR----VLKTREET 176 
TolC    85 TLQEKAAG----IQDVTYQTDQQTLILNTATAYFNVLNAIDVLSYTQAQKEAIYRQLDQT 140                
             ..:**      . .. :: : :** ..*.****   * :.:* :*     : :  ::*  
 
 
MtrE   177 YNAVRIAVQGRRDFRRRPAPAEALIESAKADYAHAARSREQARNALATLINRPIPEDLPA 236 
TolC   141 TQRFNVGLVAITDVQNARAQYDTVLANELTARNNLDNAVEQLRQITGNYYPELAALNVEN 200               
            : ..:.: .  *.:.  *  :::: .  :   :  .: ** *:  ..   .  . ::    
 
 
 
MtrE   237 GLPLDKQFFVEKLPAGLSSEVLLDRPDIRAAEHALKQANANIGAARAAFFPSIRLTGSVG 296 
TolC   201 -FKTDKPQPVNALLKEAEKRNLS----LLQARLSQDLAREQIRQAQDGHLPTLDLTASTG 255               
            :  **   *: *    ... *     :  *. : . *. :*  *: ..:*:: **.*.*  
 
 
 
MtrE   297 TGSVELGG----------LFKSGTGVWAFAPSITLPIFTWGTNKANLDVAKLRQQAQIVA 346 
TolC   256 ISDTSYSGSKTRGAAGTQYDDSNMGQNKVGLSFSLPIYQGGMVNSQVKQAQYNFVGASEQ 315               
            .... .*            .*. *   .. *::***:  *  ::::. *: .  .      
 
 
 
MtrE   347 YESAVQSAFQDVANALAAREQLDKAYDALSKQSRASKEALRLVGLRYKHGVSGALDLLDA 406 
TolC   316 LESAHRSVVQTVRSSFNNINASISSINAYKQAVVSAQSSLDAMEAGYSVGTRTIVDVLDA 375               
            *** :*..* * .::   :   .: :* .:   :::.:*  :   *. *.   :*:***  
 
 
MtrE   407 ERSSYSAEGAALSAQLTRAENLADLYKALG-----------GGLKRDTQTGK- 447 
TolC   376 TTTLYNAKQELANARYNYLINQLNIKSALGTLNEQDLLALNNALSKPVSTNPE 428                
             : *.*:    .*: .   *  :: .***           ..*.: ..*.           
 
!
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CHAPTER 5. GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

The development of new classes of antibiotics seems halted since 1970 [1]. In 

response to the need for addressing the problem of drug resistant Gram-negative bacterial 

pathogens, the “10 x’20 Initiative” was launched in 2010. Much effort was put on the 

inactivation of β-lactamases, protein synthesis inhibition and peptide mimetics [2]. In recent 

years, the multidrug efflux pumps have been characterized extensively, and could become an 

ideal target for broadening the antibacterial activity of the common β-lactam-based 

antibiotics.  

Among the efflux pumps, RND-type transporters such as CmeABC and MtrCDE are 

particularly involved in the drug-resistance of infectious pathogens [3][4]. The transcriptional 

regulator CmeR has been identified as the local repressor which has the ability to bind the 

promoter region of the cmeABC operon [5]. The crystal structure of CmeR allows us to see 

the large ligand-binding pocket and the two-helices DNA binding domain as the 

distinguishable aspects from other TetR-type transcriptional regulators [6][7].  

In Chapter 2, CmeR is separately liganded with two large amphiphilic molecules: 

taurocholic acid and cholic acid, which are abundant in intestinal tracts of animals. Although 

the overall structure of the CmeR-bile acid complex is similar to the first discovered 

glycerol-bound CmeR, the interaction between each bile acid-conjugate and the residues in 

the binding pocket is interesting. It is worth noting that several polar or charged residues 

stabilize the four-ring hydrophobic region on the hydroxyl groups of the bile salts, in 

cooperation with the hydrophobic tunnel. The diverse binding coordination and multiple sub-

binding sites, as shown in the binding cavity in the structural analysis of Chapter 2, lead to 
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the capability of multi-ligand derepression of efflux pump expression indicated by the 

conformation of the DNA binding motif. The formation of the α3-helix upon binding to 

DNA is likely to occur. The structure of CmeR-IR complex should give support to the 

previous studies regarding the DNA-induced α-helical formation [8].  

In Chapter 3, the outer membrane channel CusC from CusCBA, the only HME-RND 

transporter in E. coli, is discussed. The wild-type and mutated CusC have been cloned, 

expressed and crystallized. The Cys1 residue at the N-termini is evidently important in the 

presented structures of the Cys1 mutants of CusC. It is surprising to see the partially formed 

α-helices as dilated coiled-coils when superimposed to the trimeric CusC channel in contrast 

to the completely unstructured β-strands due to the single amino acid mutation at the Cys1 

residue. Comparison of the wild type and the mutant three-fold oligomers directs the 

proposed mechanism of the folding sequence of the outer membrane channel. Although the 

structure of unfolded β-barrel has been found, more evidence is needed to establish the 

subsequent steps in the folding process, such as the structure of intermediate state as a 

trimeric bundle without the transmembrane β-barrel domain.  

In Chapter 4, the wild-type MtrE from MtrCDE efflux system has been cloned, 

expressed and crystallized. The findings of the first native open-state of the outer membrane 

channel protein from the structure of MtrE highlights the group of charged residues that 

could possibly control the size of the periplasmic entrance and promote the interaction 

between different components. The studies based on the efflux system AcrAB-TolC have 

suggested that the recruitment of the outer membrane channel is transient [9]. Assembled in 

the periplasm, the outer membrane channel in RND-type efflux systems is likely to cycle 

through repeated recruitment by the inner membrane transporter [9]. As a hollow tube, MtrE 
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should rely on the guidance from the membrane fusion protein MtrC to accept substrates 

from the pump MtrD [10]. The enhanced interaction between MtrC and MtrE should allow 

us to obtain a co-crystal of the MFP-OMP complex for further structural analysis. 

In this dissertation, the proteins that confer drug resistance to Gram-negative bacteria 

and the regulation of their expression have been studied. In addition to the transcriptional 

regulator-bile salt complex of CmeR, the outer membrane proteins CusC and MtrE have been 

purified and crystallized for the purpose of obtaining crystal structures using X-ray 

crystallography. The depicted structures of CmeR-bile salt explain the ligand recognition that 

is commonly used by the TetR protein family of repressors [7]. The disclosure of the 

structures of CusC mutants stresses the importance of the Cys1 residue and leads to the 

proposed folding sequence that the outer membrane protein associates with the membrane to 

become multiple intermediates and create a passage for substrates of the RND efflux pump 

through the outer membrane. After the discussion of outer membrane channel formation, the 

topic is shifted to the conformational state of the outer membrane channel MtrE. As indicated 

by the crystal structure of MtrE and other studies of its interactions with the membrane 

fusion protein MtrC [10], the change of states of OMPs could be inducible by the presence of 

a working partner or a change in pH. The change of states of OMPs could be further studied 

using single channel conductance. In particular, results should show the increased 

conductance of MtrE in the open state compared with the closed state. The transition of the 

states could be investigated with different experimental conditions such as a pH gradient and 

the presence of other components in the MtrCDE efflux system. 

The characterization of fully assembled RND efflux systems is sill largely 

incomplete. Although inhibitors could be rationally designed from structures of individual 
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components, side effects may include the unwanted inhibition of human proteins transporting 

essential nutrients. Instead of targeting the components separately, breaking down the 

assembly to disable the pump is another method. The efficiency of RND transporters is due 

to the close collaboration between each part. Therefore, one can possibly produce drugs that 

attack the state of cooperation. Knowledge of the exact interactions between these 

antimicrobial pumps and methods to disrupt them must await elucidation of the structures of 

the fully assembled efflux complexes.  
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